[go: up one dir, main page]

login
A181375
Total number of positive integers below 10^n requiring 2 positive cubes in their representation as sum of cubes.
9
2, 9, 41, 202, 938, 4354, 20330, 94625, 439959, 2045048, 9500746, 44124084, 204883131, 951202028, 4415710979, 20497646229, 95146359635
OFFSET
1,1
COMMENTS
A061439(n) + a(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
MAPLE
iscube:=proc(n) if root(n, 3)=trunc(root(n, 3)) then true; else false; fi; end:
isA003325:=proc(n) local x, y3; if iscube(n) then false; else for x from 1 do y3:=n-x^3; if y3<x^3 then return false; elif iscube(y3) then return true; fi; od; fi; end:
a:=proc(n) local i, k; i:=0; for k from 2 to 10^n-1 do if isA003325(k) then i:=i+1; fi; od: return(i); end:
for n from 1 do print(a(n)); od;
PROG
(PARI) a(n)=my(N=10^n, v=List(), x3); sum(x=1, sqrtnint(N-1, 3), x3=x^3; sum(y=1, min(sqrtnint(N-x3, 3), x), !ispower(x3+y^3, 3) && listput(v, x3+y^3))); #vecsort(v, , 8) \\ Charles R Greathouse IV, Oct 16 2013
CROSSREFS
Cf. A003325.
Sequence in context: A362381 A292078 A270766 * A152052 A192661 A020038
KEYWORD
nonn,more
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(6)-a(12) from Lars Blomberg, May 04 2011
a(13)-a(17) from Hiroaki Yamanouchi, Jul 12 2014
STATUS
approved