Displaying 1-8 of 8 results found.
page
1
a(1)=15; for n>1, a(n) = the smallest number k >a(n-1) such that 2* A174214(k)= 3*(k-1).
+10
6
15, 27, 63, 123, 279, 567, 1143, 2307, 4623, 9447, 18927, 38283, 77139, 154839, 309747, 620463, 1241823, 2483847, 4967739, 9935607, 19892547, 39785199
COMMENTS
Theorem: If the sequence is infinite, then there exist infinitely many twin primes.
Conjecture. a(n+1)/a(n) tends to 2.
MAPLE
A174216 := proc(n) option remember ; if n =1 then 15 ; else for k from procname(n-1)+1 do if 2* A173214(k) = 3*(k-1) then return k; end if; end do ; end if; end proc: # R. J. Mathar, Mar 16 2010
MATHEMATICA
(* b = A174214 *) b[n_] := b[n] = Which[n==9, 14, CoprimeQ[b[n-1], n-1- (-1)^n], b[n-1]+1, True, 2n-4]; a[n_] := a[n] = If[n==1, 15, For[k = a[n- 1]+1, True, k++, If[2b[k] == 3(k-1), Return[k]]]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 02 2016 *)
EXTENSIONS
I corrected the terms beginning with a(11) and added some new terms. - Vladimir Shevelev, Mar 27 2010
Terms from a(11) onwards were corrected according to independent calculations by R. Mathar, M. Alekseyev, M. Hasler and A. Heinz (SeqFan lists 30 Oct and 1 Nov 2010). - Vladimir Shevelev, Nov 02 2010
a(1) = 2; thereafter a(n) = a(n-1) + gcd(n, a(n-1)) if n is odd, and a(n) = a(n-1) + gcd(n-2, a(n-1)) if n is even.
+10
5
2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 124, 125, 126
COMMENTS
Conjectures. 1) For n >= 2, every difference a(n) - a(n-1) is 1 or prime; 2) Every record of differences a(n) - a(n-1) greater than 3 belongs to the sequence of the greater of twin primes ( A006512).
Conjecture #1 above fails at n = 620757, with a(n) = 1241487 and a(n-1) = 1241460, difference = 27. Additionally, the terms of related A167495(m) quickly tend to index n/2. So for example, A167495(14) = 19141 is seen at n = 38284. - Bill McEachen, Jan 20 2023
It seems that, for n > 4, (3*n-3)/2 <= a(n) <= 2n - 3. Can anyone find a proof or disproof? - Charles R Greathouse IV, Jan 22 2023
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[EvenQ[n], a+GCD[n+1, a], a+GCD[n-1, a]]}; Transpose[ NestList[nxt, {1, 2}, 70]][[2]] (* Harvey P. Dale, Dec 05 2015 *)
PROG
(PARI) lista(nn)=my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1])); ); va; \\ Michel Marcus, Dec 13 2018
(Python)
from math import gcd
from itertools import count, islice
def agen(): # generator of terms
an = 2
for n in count(2):
yield an
an = an + gcd(n, an) if n&1 else an + gcd(n-2, an)
CROSSREFS
Cf. A167197, A167195, A167170, A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.
a(n) = a(n-1)+1, if the previous term a(n-1) and n-1-(-1)^n are coprime, else a(n)=2*n-4.
+10
5
14, 16, 17, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134
MAPLE
A174214 := proc(n) option remember ; if n = 9 then 14 ; elif gcd(procname(n-1), n-1-(-1)^n) = 1 then procname(n-1)+1 ; else 2*n-4 ; end if; end proc:
MATHEMATICA
a[n_] := a[n] = Which[n==9, 14, CoprimeQ[a[n-1], n-1-(-1)^n], a[n-1]+1, True, 2n-4]; Table[a[n], {n, 9, 100}] (* Jean-François Alcover, Feb 02 2016 *)
EXTENSIONS
a(15) corrected and sequence extended by R. J. Mathar, Mar 16 2010
7, 13, 31, 61, 139, 283, 571, 1153, 2311, 4723, 9463, 19141, 38569, 77419, 154873, 310231, 620911, 1241923, 2483869, 4967803, 9946273, 19892599
COMMENTS
Related to the generation of twin primes according to section 6 of the preprint.
MATHEMATICA
(* b = A174214 *) b[n_] := b[n] = Which[n == 9, 14, CoprimeQ[b[n - 1], n - 1 - (-1)^n], b[n - 1] + 1, True, 2 n - 4];
(* c = A174216 *) c[n_] := c[n] = If[n == 1, 15, For[k = c[n - 1] + 1, True, k++, If[2 b[k] == 3 (k - 1), Return[k]]]];
Table[a[n] = (c[n] - 1)/2; Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Jan 29 2019 *)
2, 1, 1, 1, 1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
COMMENTS
If a(n) is odd, then it is 1 or prime; if a(n) is even, then 2+a(n)/2 is prime.
a(17)=37; for n>=17, a(n)=3n-14 if gcd(n,a(n-1))>1 and all prime divisors of n more than 17; a(n)=a(n-1)+1, otherwise
+10
2
37, 38, 43, 44, 45, 46, 55, 56, 57, 58, 59, 60, 61, 62, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157
COMMENTS
a(n+1)-a(n)+14 is either 15 or a prime > 17. For a generalization, see the second Shevelev link. - Edited by Robert Israel, Aug 21 2017
MAPLE
A[17]:= 37:
q:= convert(select(isprime, [$2..17]), `*`);
for n from 18 to 100 do
if igcd(n, A[n-1]) > 1 and igcd(n, q) = 1 then A[n]:= 3*n-14
else A[n]:= A[n-1]+1 fi
od:
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[GCD[n+1, a]>1&&FactorInteger[n+1][[1, 1]]>17, 3(n+1)-14, a+1]}; NestList[nxt, {17, 37}, 60][[All, 2]] (* Harvey P. Dale, Aug 15 2017 *)
CROSSREFS
Cf. A167495, A167494, A167493, A167197, A167195, A167170, A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.
a(n) is the smallest k >= 1 for which gcd(m + (-1)^m, m + n - 4) > 1, where m = n + k - 1.
+10
1
1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 18, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 30, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 42, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 60, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 72, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 102
COMMENTS
If a(n) > sqrt(n), then n-3 is the larger of twin primes. In these cases we have a(10)=5 and, for n > 10, a(n) = n-4. For odd n and for n == 2 (mod 6), a(n)=1; for n == 0 (mod 6), a(n)=2; for {n == 4 (mod 6)} & {n == 8 (mod 10)}, a(n)=4, etc. The problem is to develop this sieve for the excluding n for which a(n) <= sqrt(n) and to obtain nontrivial lower estimates for the counting function of the larger of twin primes.
MAPLE
A174453 := proc(n) local k, m ; for k from 1 do m := n+k-1 ; if igcd(m+(-1)^m, m+n-4) > 1 then return k; end if; end do: end proc: seq( A174453(n), n=5..120); # R. J. Mathar, Nov 04 2010
MATHEMATICA
a[n_] := For[k=1, True, k++, m=n+k-1; If[GCD[m+(-1)^m, m+n-4]>1, Return[k]] ];
CROSSREFS
Cf. A173980, A020639, A173978, A173977, A173979, A174217, A174216, A174214, A174215, A166945, A167495.
First differences of A168143 which are different from 1, incremented by 14.
+10
0
COMMENTS
All terms of the sequence are primes greater than 17.
Are there more than 5 terms?
CROSSREFS
Cf. A168143, A167495, A167494, A167493, A167197, A167195, A167170, A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.
Search completed in 0.011 seconds
|