[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a167495 -id:a167495
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(1)=15; for n>1, a(n) = the smallest number k >a(n-1) such that 2*A174214(k)= 3*(k-1).
+10
6
15, 27, 63, 123, 279, 567, 1143, 2307, 4623, 9447, 18927, 38283, 77139, 154839, 309747, 620463, 1241823, 2483847, 4967739, 9935607, 19892547, 39785199
OFFSET
1,1
COMMENTS
Theorem: If the sequence is infinite, then there exist infinitely many twin primes.
Conjecture. a(n+1)/a(n) tends to 2.
LINKS
V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014.
MAPLE
A174216 := proc(n) option remember ; if n =1 then 15 ; else for k from procname(n-1)+1 do if 2*A173214(k) = 3*(k-1) then return k; end if; end do ; end if; end proc: # R. J. Mathar, Mar 16 2010
MATHEMATICA
(* b = A174214 *) b[n_] := b[n] = Which[n==9, 14, CoprimeQ[b[n-1], n-1- (-1)^n], b[n-1]+1, True, 2n-4]; a[n_] := a[n] = If[n==1, 15, For[k = a[n- 1]+1, True, k++, If[2b[k] == 3(k-1), Return[k]]]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 02 2016 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vladimir Shevelev, Mar 12 2010
EXTENSIONS
Terms from a(11) on corrected by R. J. Mathar, Mar 16 2010
I corrected the terms beginning with a(11) and added some new terms. - Vladimir Shevelev, Mar 27 2010
Terms from a(11) onwards were corrected according to independent calculations by R. Mathar, M. Alekseyev, M. Hasler and A. Heinz (SeqFan lists 30 Oct and 1 Nov 2010). - Vladimir Shevelev, Nov 02 2010
STATUS
approved
a(1) = 2; thereafter a(n) = a(n-1) + gcd(n, a(n-1)) if n is odd, and a(n) = a(n-1) + gcd(n-2, a(n-1)) if n is even.
+10
5
2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 124, 125, 126
OFFSET
1,1
COMMENTS
Conjectures. 1) For n >= 2, every difference a(n) - a(n-1) is 1 or prime; 2) Every record of differences a(n) - a(n-1) greater than 3 belongs to the sequence of the greater of twin primes (A006512).
Conjecture #1 above fails at n = 620757, with a(n) = 1241487 and a(n-1) = 1241460, difference = 27. Additionally, the terms of related A167495(m) quickly tend to index n/2. So for example, A167495(14) = 19141 is seen at n = 38284. - Bill McEachen, Jan 20 2023
It seems that, for n > 4, (3*n-3)/2 <= a(n) <= 2n - 3. Can anyone find a proof or disproof? - Charles R Greathouse IV, Jan 22 2023
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol.11 (2008), Article 08.2.8.
Vladimir Shevelev, A new generator of primes based on the Rowland idea, arXiv:0910.4676 [math.NT], 2009.
Vladimir Shevelev, Three theorems on twin primes, arXiv:0911.5478 [math.NT], 2009-2010.
FORMULA
For n > 3, n < a(n) < n*(n-1)/2. - Charles R Greathouse IV, Jan 22 2023
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[EvenQ[n], a+GCD[n+1, a], a+GCD[n-1, a]]}; Transpose[ NestList[nxt, {1, 2}, 70]][[2]] (* Harvey P. Dale, Dec 05 2015 *)
PROG
(PARI) lista(nn)=my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1])); ); va; \\ Michel Marcus, Dec 13 2018
(Python)
from math import gcd
from itertools import count, islice
def agen(): # generator of terms
an = 2
for n in count(2):
yield an
an = an + gcd(n, an) if n&1 else an + gcd(n-2, an)
print(list(islice(agen(), 66))) # Michael S. Branicky, Jan 22 2023
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 05 2009
EXTENSIONS
More terms from Harvey P. Dale, Dec 05 2015
STATUS
approved
a(n) = a(n-1)+1, if the previous term a(n-1) and n-1-(-1)^n are coprime, else a(n)=2*n-4.
+10
5
14, 16, 17, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134
OFFSET
9,1
LINKS
V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014.
MAPLE
A174214 := proc(n) option remember ; if n = 9 then 14 ; elif gcd(procname(n-1), n-1-(-1)^n) = 1 then procname(n-1)+1 ; else 2*n-4 ; end if; end proc:
seq(A174214(n), n=9..100) ; # R. J. Mathar, Mar 16 2010
MATHEMATICA
a[n_] := a[n] = Which[n==9, 14, CoprimeQ[a[n-1], n-1-(-1)^n], a[n-1]+1, True, 2n-4]; Table[a[n], {n, 9, 100}] (* Jean-François Alcover, Feb 02 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Mar 12 2010
EXTENSIONS
a(15) corrected and sequence extended by R. J. Mathar, Mar 16 2010
a(15) corrected and a(35)-a(74) added by John W. Layman, Mar 16 2010
STATUS
approved
a(n) = (A174216(n)-1)/2.
+10
4
7, 13, 31, 61, 139, 283, 571, 1153, 2311, 4723, 9463, 19141, 38569, 77419, 154873, 310231, 620911, 1241923, 2483869, 4967803, 9946273, 19892599
OFFSET
1,1
COMMENTS
Related to the generation of twin primes according to section 6 of the preprint.
LINKS
V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014.
FORMULA
A174214(A174216(n)) = 3*a(n), n>1.
MATHEMATICA
(* b = A174214 *) b[n_] := b[n] = Which[n == 9, 14, CoprimeQ[b[n - 1], n - 1 - (-1)^n], b[n - 1] + 1, True, 2 n - 4];
(* c = A174216 *) c[n_] := c[n] = If[n == 1, 15, For[k = c[n - 1] + 1, True, k++, If[2 b[k] == 3 (k - 1), Return[k]]]];
Table[a[n] = (c[n] - 1)/2; Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Jan 29 2019 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vladimir Shevelev, Mar 12 2010
EXTENSIONS
Terms after a(11) corrected by Vladimir Shevelev, Nov 02 2010
STATUS
approved
First differences of A174214.
+10
3
2, 1, 1, 1, 1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
9,1
COMMENTS
If a(n) is odd, then it is 1 or prime; if a(n) is even, then 2+a(n)/2 is prime.
FORMULA
a(n) = A174214(n+1)-A174214(n).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Shevelev, Mar 12 2010
EXTENSIONS
Terms corrected, using the Mathar-Layman corrections of A174214, by Vladimir Shevelev, Mar 26 2010
STATUS
approved
a(17)=37; for n>=17, a(n)=3n-14 if gcd(n,a(n-1))>1 and all prime divisors of n more than 17; a(n)=a(n-1)+1, otherwise
+10
2
37, 38, 43, 44, 45, 46, 55, 56, 57, 58, 59, 60, 61, 62, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157
OFFSET
17,1
COMMENTS
a(n+1)-a(n)+14 is either 15 or a prime > 17. For a generalization, see the second Shevelev link. - Edited by Robert Israel, Aug 21 2017
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol. 11 (2008), Article 08.2.8.
V. Shevelev, A new generator of primes based on the Rowland idea, arXiv:0910.4676 [math.NT], 2009.
V. Shevelev, Generalizations of the Rowland theorem, arXiv:0911.3491 [math.NT], 2009-2010.
MAPLE
A[17]:= 37:
q:= convert(select(isprime, [$2..17]), `*`);
for n from 18 to 100 do
if igcd(n, A[n-1]) > 1 and igcd(n, q) = 1 then A[n]:= 3*n-14
else A[n]:= A[n-1]+1 fi
od:
seq(A[i], i=17..100); # Robert Israel, Aug 21 2017
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[GCD[n+1, a]>1&&FactorInteger[n+1][[1, 1]]>17, 3(n+1)-14, a+1]}; NestList[nxt, {17, 37}, 60][[All, 2]] (* Harvey P. Dale, Aug 15 2017 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 19 2009
EXTENSIONS
Corrected by Harvey P. Dale, Aug 15 2017
STATUS
approved
a(n) is the smallest k >= 1 for which gcd(m + (-1)^m, m + n - 4) > 1, where m = n + k - 1.
+10
1
1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 18, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 30, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 42, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 60, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 72, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 102
OFFSET
5,2
COMMENTS
If a(n) > sqrt(n), then n-3 is the larger of twin primes. In these cases we have a(10)=5 and, for n > 10, a(n) = n-4. For odd n and for n == 2 (mod 6), a(n)=1; for n == 0 (mod 6), a(n)=2; for {n == 4 (mod 6)} & {n == 8 (mod 10)}, a(n)=4, etc. The problem is to develop this sieve for the excluding n for which a(n) <= sqrt(n) and to obtain nontrivial lower estimates for the counting function of the larger of twin primes.
LINKS
V. Shevelev, Theorems on twin primes-dual case, arXiv:0912.4006 [math.GM], 2009-2014.
MAPLE
A174453 := proc(n) local k, m ; for k from 1 do m := n+k-1 ; if igcd(m+(-1)^m, m+n-4) > 1 then return k; end if; end do: end proc: seq(A174453(n), n=5..120); # R. J. Mathar, Nov 04 2010
MATHEMATICA
a[n_] := For[k=1, True, k++, m=n+k-1; If[GCD[m+(-1)^m, m+n-4]>1, Return[k]] ];
Table[a[n], {n, 5, 106}] (* Jean-François Alcover, Nov 29 2017 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Mar 20 2010
EXTENSIONS
Terms beyond a(34) from R. J. Mathar, Nov 04 2010
STATUS
approved
First differences of A168143 which are different from 1, incremented by 14.
+10
0
19, 23, 31, 47, 79
OFFSET
1,1
COMMENTS
All terms of the sequence are primes greater than 17.
Are there more than 5 terms?
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, 11 (2008), Article 08.2.8.
V. Shevelev, Generalizations of the Rowland theorem, arXiv:0911.3491 [math.NT], 2009-2010.
MATHEMATICA
A168143[17] = 37;
A168143[n_] := A168143[n] = If[GCD[n, A168143[n - 1]] > 1 && FactorInteger[n][[1, 1]] > 17, 3 n - 14, A168143[n - 1] + 1]
DeleteCases[Differences[A168143 /@ Range[17, 100]], 1] + 14 (* Eric Rowland, Jan 27 2019 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 19 2009
EXTENSIONS
Corrected and edited by Eric Rowland, Jan 27 2019
STATUS
approved

Search completed in 0.011 seconds