Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jan 24 2023 14:42:43
%S 2,4,5,6,7,8,9,12,15,16,17,18,19,20,25,26,27,28,29,30,33,34,35,36,37,
%T 38,39,52,53,54,55,60,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,
%U 79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,124,125,126
%N a(1) = 2; thereafter a(n) = a(n-1) + gcd(n, a(n-1)) if n is odd, and a(n) = a(n-1) + gcd(n-2, a(n-1)) if n is even.
%C Conjectures. 1) For n >= 2, every difference a(n) - a(n-1) is 1 or prime; 2) Every record of differences a(n) - a(n-1) greater than 3 belongs to the sequence of the greater of twin primes (A006512).
%C Conjecture #1 above fails at n = 620757, with a(n) = 1241487 and a(n-1) = 1241460, difference = 27. Additionally, the terms of related A167495(m) quickly tend to index n/2. So for example, A167495(14) = 19141 is seen at n = 38284. - _Bill McEachen_, Jan 20 2023
%C It seems that, for n > 4, (3*n-3)/2 <= a(n) <= 2n - 3. Can anyone find a proof or disproof? - _Charles R Greathouse IV_, Jan 22 2023
%H Bill McEachen, <a href="/A167493/b167493.txt">Table of n, a(n) for n = 1..100000</a>
%H E. S. Rowland, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Rowland/rowland21.html">A natural prime-generating recurrence</a>, Journal of Integer Sequences, Vol.11 (2008), Article 08.2.8.
%H Vladimir Shevelev, <a href="https://arxiv.org/abs/0910.4676">A new generator of primes based on the Rowland idea</a>, arXiv:0910.4676 [math.NT], 2009.
%H Vladimir Shevelev, <a href="https://arxiv.org/abs/0911.5478">Three theorems on twin primes</a>, arXiv:0911.5478 [math.NT], 2009-2010.
%F For n > 3, n < a(n) < n*(n-1)/2. - _Charles R Greathouse IV_, Jan 22 2023
%t nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+GCD[n+1,a],a+GCD[n-1,a]]}; Transpose[ NestList[nxt,{1,2},70]][[2]] (* _Harvey P. Dale_, Dec 05 2015 *)
%o (PARI) lista(nn)=my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1]));); va; \\ _Michel Marcus_, Dec 13 2018
%o (Python)
%o from math import gcd
%o from itertools import count, islice
%o def agen(): # generator of terms
%o an = 2
%o for n in count(2):
%o yield an
%o an = an + gcd(n, an) if n&1 else an + gcd(n-2, an)
%o print(list(islice(agen(), 66))) # _Michael S. Branicky_, Jan 22 2023
%Y Cf. A167197, A167195, A167170, A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.
%Y Cf also A006512, A167494.
%K nonn
%O 1,1
%A _Vladimir Shevelev_, Nov 05 2009
%E More terms from _Harvey P. Dale_, Dec 05 2015