[go: up one dir, main page]

login
A167494
List of first differences of A167493 that are different from 1.
5
2, 3, 3, 5, 3, 13, 5, 3, 31, 61, 7, 5, 3, 7, 139, 5, 3, 283, 5, 3, 571, 7, 5, 3, 1153, 5, 3, 2311, 31, 4651, 17, 5, 13, 3, 3, 5, 3, 9343, 5, 3, 11, 3, 59, 3, 29, 3, 19, 7, 5, 3, 7, 19, 5, 3, 17, 3, 113
OFFSET
1,1
COMMENTS
Conjecture. All terms of the sequence are primes.
The conjecture is false: a(144)=27, a(146)=25, a(158)=45, etc., which are composite numbers. - Harvey P. Dale, Dec 05 2015
LINKS
E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol. 11 (2008), Article 08.2.8.
V. Shevelev, A new generator of primes based on the Rowland idea, arXiv:0910.4676 [math.NT], 2009.
V. Shevelev, Three theorems on twin primes, arXiv:0911.5478 [math.NT], 2009-2010. [From Vladimir Shevelev, Dec 03 2009]
MATHEMATICA
nxt[{n_, a_}]:={n+1, If[EvenQ[n], a+GCD[n+1, a], a+GCD[n-1, a]]}; DeleteCases[ Differences[ Transpose[NestList[nxt, {1, 2}, 20000]][[2]]], 1] (* Harvey P. Dale, Dec 05 2015 *)
PROG
(PARI) lista(nn) = {my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1])); ); select(x->(x!=1), vector(nn-1, n, va[n+1] - va[n])); } \\ Michel Marcus, Dec 13 2018
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 05 2009
STATUS
approved