[go: up one dir, main page]

login
Search: a165335 -id:a165335
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 3*n + 2.
+10
196
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86, 89, 92, 95, 98, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179
OFFSET
0,1
COMMENTS
Except for 1, n such that Sum_{k=1..n} (k mod 3)*binomial(n,k) is a power of 2. - Benoit Cloitre, Oct 17 2002
The sequence 0,0,2,0,0,5,0,0,8,... has a(n) = n*(1 + cos(2*Pi*n/3 + Pi/3) - sqrt(3)*sin(2*Pi*n + Pi/3))/3 and o.g.f. x^2(2+x^3)/(1-x^3)^2. - Paul Barry, Jan 28 2004 [Artur Jasinski, Dec 11 2007, remarks that this should read (3*n + 2)*(1 + cos(2*Pi*(3*n + 2)/3 + Pi/3) - sqrt(3)*sin(2*Pi*(3*n + 2)/3 + Pi/3))/3.]
Except for 2, exponents e such that x^e + x + 1 is reducible. - N. J. A. Sloane, Jul 19 2005
The trajectory of these numbers under iteration of sum of cubes of digits eventually turns out to be 371 or 407 (47 is the first of the second kind). - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 19 2009
Union of A165334 and A165335. - Reinhard Zumkeller, Sep 17 2009
a(n) is the set of numbers congruent to {2,5,8} mod 9. - Gary Detlefs, Mar 07 2010
It appears that a(n) is the set of all values of y such that y^3 = k*n + 2 for integer k. - Gary Detlefs, Mar 08 2010
These numbers do not occur in A000217 (triangular numbers). - Arkadiusz Wesolowski, Jan 08 2012
A089911(2*a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
Also indices of even Bell numbers (A000110). - Enrique Pérez Herrero, Sep 10 2013
Central terms of the triangle A108872. - Reinhard Zumkeller, Oct 01 2014
A092942(a(n)) = 1 for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n-1), n >= 1, is also the complex dimension of the manifold E(S), the set of all second-order irreducible Fuchsian differential equations defined on P^1 = C U {oo}, having singular points at most in S = {a_1, ..., a_n, a_{n+1} = oo}, a subset of P^1. See the Iwasaki et al. reference, Proposition 2.1.3., p. 149. - Wolfdieter Lang, Apr 22 2016
Except for 2, exponents for which 1 + x^(n-1) + x^n is reducible. - Ron Knott, Sep 16 2016
The reciprocal sum of 8 distinct items from this sequence can be made equal to 1, with these terms: 2, 5, 8, 14, 20, 35, 41, 1640. - Jinyuan Wang, Nov 16 2018
There are no positive integers x, y, z such that 1/a(x) = 1/a(y) + 1/a(z). - Jinyuan Wang, Dec 31 2018
As a set of positive integers, it is the set sum S + S where S is the set of numbers in A016777. - Michael Somos, May 27 2019
Interleaving of A016933 and A016969. - Leo Tavares, Nov 16 2021
Prepended with {1}, these are the denominators of the elements of the 3x+1 semigroup, the numerators being A005408 prepended with {2}. See Applegate and Lagarias link for more information. - Paolo Xausa, Nov 20 2021
This is also the maximum number of moves starting with n + 1 dots in the game of Sprouts. - Douglas Boffey, Aug 01 2022 [See the Wikipedia link. - Wolfdieter Lang, Sep 29 2022]
a(n-2) is the maximum sum of the span (or L(2,1)-labeling number) of a graph of order n and its complement. The extremal graphs are stars and their complements. For example, K_{1,2} has span 3, and K_2 has span 2. Thus a(3-1) = 5. - Allan Bickle, Apr 20 2023
REFERENCES
K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 149.
Konrad Knopp, Theory and Application of Infinite Series, Dover, p. 269
LINKS
D. Applegate and J. C. Lagarias, The 3x+1 semigroup, Journal of Number Theory, Vol. 177, Issue 1, March 2006, pp. 146-159; see also the arXiv version, arXiv:math/0411140 [math.NT], 2004-2005.
H. Balakrishnan and N. Deo, Parallel algorithm for radiocoloring a graph, Congr. Numer. 160 (2003), 193-204.
Allan Bickle, Extremal Decompositions for Nordhaus-Gaddum Theorems, Discrete Math, 346 7 (2023), 113392.
L. Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004-2009, p. 9.
L. B. W. Jolley, Summation of Series, Dover, 1961, p. 16
Tanya Khovanova, Recursive Sequences
Konrad Knopp, Theorie und Anwendung der unendlichen Reihen, Berlin, J. Springer, 1922. (Original German edition of "Theory and Application of Infinite Series")
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
Wikipedia, Sprouts (game)
FORMULA
G.f.: (2+x)/(1-x)^2.
a(n) = 3 + a(n-1).
a(n) = 1 + A016777(n).
a(n) = A124388(n)/9.
a(n) = A125199(n+1,1). - Reinhard Zumkeller, Nov 24 2006
Sum_{n>=1} (-1)^n/a(n) = (1/3)*(Pi/sqrt(3) - log(2)). - Benoit Cloitre, Apr 05 2002
1/2 - 1/5 + 1/8 - 1/11 + ... = (1/3)*(Pi/sqrt(3) - log 2). [Jolley] - Gary W. Adamson, Dec 16 2006
Sum_{n>=0} 1/(a(2*n)*a(2*n+1)) = (Pi/sqrt(3) - log 2)/9 = 0.12451569... (see A196548). [Jolley p. 48 eq (263)]
a(n) = 2*a(n-1) - a(n-2); a(0)=2, a(1)=5. - Philippe Deléham, Nov 03 2008
a(n) = 6*n - a(n-1) + 1 with a(0)=2. - Vincenzo Librandi, Aug 25 2010
Conjecture: a(n) = n XOR A005351(n+1) XOR A005352(n+1). - Gilian Breysens, Jul 21 2017
E.g.f.: (2 + 3*x)*exp(x). - G. C. Greubel, Nov 02 2018
a(n) = A005449(n+1) - A005449(n). - Jinyuan Wang, Feb 03 2019
a(n) = -A016777(-1-n) for all n in Z. - Michael Somos, May 27 2019
a(n) = A007310(n+1) + (1 - n mod 2). - Walt Rorie-Baety, Sep 13 2021
a(n) = A000096(n+1) - A000217(n-1). See Capped Triangular Frames illustration. - Leo Tavares, Oct 05 2021
EXAMPLE
G.f. = 2 + 5*x + 8*x^2 + 11*x^3 + 14*x^4 + 17*x^5 + 20*x^6 + ... - Michael Somos, May 27 2019
MAPLE
seq(3*n+2, n = 0 .. 50); # Matt C. Anderson, May 18 2017
MATHEMATICA
Range[2, 500, 3] (* Vladimir Joseph Stephan Orlovsky, May 26 2011 *)
LinearRecurrence[{2, -1}, {2, 5}, 70] (* Harvey P. Dale, Aug 11 2021 *)
PROG
(Haskell)
a016789 = (+ 2) . (* 3) -- Reinhard Zumkeller, Jul 05 2013
(PARI) vector(100, n, 3*n-1) \\ Derek Orr, Apr 13 2015
(Magma) [3*n+2: n in [0..80]]; // Vincenzo Librandi, Apr 14 2015
(GAP) List([0..70], n->3*n+2); # Muniru A Asiru, Nov 02 2018
(Python) for n in range(0, 100): print(3*n+2, end=', ') # Stefano Spezia, Nov 21 2018
CROSSREFS
First differences of A005449.
Cf. A087370.
Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.
KEYWORD
nonn,easy
STATUS
approved
Fixed points for operation of repeatedly replacing a number with the sum of the cubes of its digits.
+10
26
0, 1, 153, 370, 371, 407
OFFSET
1,3
COMMENTS
Suppose n has d digits; then the sum of the cubes of its digits is <= 729d and n >= 10^(d-1). So d <= 5. It is now easy to check that the numbers shown are the only solutions. [Corrected by M. F. Hasler, Apr 12 2015]
This is row n=3 of A252648. - M. F. Hasler, Apr 12 2015
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 153, p. 50, Ellipses, Paris 2008.
G. H. Hardy, A Mathematician's Apology, Cambridge, 1967.
J. Shallit, Number theory and formal languages, in Emerging applications of number theory (Minneapolis, MN, 1996), 547-570, IMA Vol. Math. Appl., 109, Springer, New York, 1999.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 140.
LINKS
H. Lehning, La migration des nombres vers le bonheur, Tangente: L'aventure mathématique, pp. 27 No. 108 Jan-Feb 2006 Pole Paris.
FORMULA
A055012(a(n))=a(n); A165331(a(n))=0; subset of A031179. - Reinhard Zumkeller, Sep 17 2009
EXAMPLE
1^3 + 5^3 + 3^3 = 153. 3^3+7^3 +0^3 = 370.
MATHEMATICA
Select[Range[0, 407], Total[IntegerDigits[#]^3]==# &] (* Stefano Spezia, Sep 08 2024 *)
PROG
(PARI) for(n=0, 10^5, A055012(n)==n&&print1(n", ")) \\ M. F. Hasler, Apr 12 2015
KEYWORD
nonn,fini,full,base
AUTHOR
Richard C. Schroeppel
STATUS
approved
Numbers having period-1 3-digitized sequences.
+10
12
0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 58, 59, 60, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81, 83, 84, 85
OFFSET
1,3
COMMENTS
Equivalently, numbers that eventually reach a fixed point under "x -> sum of cubes of digits of x". - Reinhard Zumkeller, Sep 17 2009
LINKS
Eric Weisstein's World of Mathematics, Digitaddition
CROSSREFS
Complement of A165336.
Cf. A031178.
KEYWORD
nonn,base
EXTENSIONS
Missing a(0)=0 inserted by Sean A. Irvine, Apr 14 2020
STATUS
approved
Numbers that eventually reach 1 under "x -> sum of cubes of digits of x".
+10
9
1, 10, 100, 112, 121, 211, 778, 787, 877, 1000, 1012, 1021, 1102, 1120, 1189, 1198, 1201, 1210, 1234, 1243, 1324, 1342, 1423, 1432, 1579, 1597, 1759, 1795, 1819, 1891, 1918, 1957, 1975, 1981, 2011, 2101, 2110, 2134, 2143, 2314, 2341, 2413, 2431, 2779
OFFSET
1,2
COMMENTS
Subsequence of A016777; a(n) mod 3 = 1; A165330(a(n))=1. [Reinhard Zumkeller, Sep 17 2009]
REFERENCES
R. K. Guy, Unsolved Problems Number Theory, Sect. E34.
LINKS
R. Styer, Smallest Examples of Strings of Consecutive Happy Numbers, J. Int. Seq. 13 (2010), 10.6.3, Section 4.
MATHEMATICA
f[n_]:=Plus@@(IntegerDigits[n]^3); Trajectory[n_] := Most[NestWhileList[f, n, UnsameQ, All]]; Select[Range[2780], Last[Trajectory[#]]==1 &] (* Ant King, May 24 2013 *)
CROSSREFS
Cf. A007770.
Cf. A046197, A008585, A165333, A165334, A165335; subsequence of A031179.
KEYWORD
nonn,easy,base
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Mar 31 2000
STATUS
approved
Numbers that eventually reach the fixed point 370 under "x -> sum of cubes of digits of x" (see A055012).
+10
6
7, 19, 34, 37, 43, 58, 67, 70, 73, 76, 85, 88, 91, 109, 118, 124, 139, 142, 145, 148, 154, 157, 166, 169, 175, 178, 181, 184, 187, 190, 193, 196, 214, 223, 226, 232, 241, 247, 259, 262, 268, 274, 277, 286, 295, 304, 307, 319, 322, 334, 340, 343, 346, 355, 358
OFFSET
1,1
COMMENTS
A165330(a(n)) = 370;
Subsequence of A031179 and of A016777; a(n) mod 3 = 1.
EXAMPLE
a(3)=34: 34 -> 3^3+4^3=91 -> 9^3+1=730 -> 7^3+3^3+0=370.
MATHEMATICA
f[n_] := Plus@@(IntegerDigits[n]^3); Trajectory[n_] := Most[NestWhileList[f, n, UnsameQ , All]]; Select[Range[358], Last[Trajectory[#]] == 370&] (* Ant King, May 24 2013 *)
KEYWORD
base,nonn
AUTHOR
Reinhard Zumkeller, Sep 17 2009
STATUS
approved
Numbers that eventually reach the fixed point 371 under "x -> sum of cubes of digits of x" (see A055012).
+10
6
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 50, 53, 56, 59, 62, 65, 68, 71, 80, 83, 86, 92, 95, 101, 104, 107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 161, 164, 167, 170, 173, 176, 179, 182, 185, 188, 191
OFFSET
1,1
COMMENTS
A165330(a(n)) = 371;
Subsequence of A031179;
complement of A165335 with respect to A016789; a(n) mod 3 = 2.
EXAMPLE
a(10)=29: 29 -> 2^3+9^3=737 -> 2*7^3+3^3=713 -> 7^3+1+3^3=371.
MATHEMATICA
f[n_] := Plus@@(IntegerDigits[n]^3); Trajectory[n_] := Most[NestWhileList[f, n, UnsameQ , All]]; Select[Range[191], Last[Trajectory[#]]==371 &] (* Ant King, May 24 2013 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Reinhard Zumkeller, Sep 17 2009
STATUS
approved

Search completed in 0.012 seconds