[go: up one dir, main page]

login
Search: a145133 -id:a145133
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where sequence a_k of column k is the expansion of x/((1 - x - x^4)*(1 - x)^(k - 1)).
+10
28
0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 3, 1, 1, 0, 1, 4, 6, 4, 2, 1, 0, 1, 5, 10, 10, 6, 3, 1, 0, 1, 6, 15, 20, 16, 9, 4, 1, 0, 1, 7, 21, 35, 36, 25, 13, 5, 2, 0, 1, 8, 28, 56, 71, 61, 38, 18, 7, 3, 0, 1, 9, 36, 84, 127, 132, 99, 56, 25, 10, 4, 0, 1, 10, 45, 120, 211, 259, 231, 155, 81, 35, 14, 5
OFFSET
0,13
COMMENTS
Each row sequence a_n (for n > 0) is produced by a polynomial of degree n-1, whose (rational) coefficients are given in row n of A145140/A145141. The coefficients *(n-1)! are given in A145142.
Each column sequence a_k is produced by a recursion, whose coefficients are given by row k of A145152.
LINKS
FORMULA
G.f. of column k: x/((1-x-x^4)*(1-x)^(k-1)).
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 1, 4, 10, 20, 35, 56, ...
1, 2, 6, 16, 36, 71, 127, ...
MAPLE
A:= proc(n, k) coeftayl (x/ (1-x-x^4)/ (1-x)^(k-1), x=0, n) end:
seq(seq(A(n, d-n), n=0..d), d=0..13);
MATHEMATICA
a[n_, k_] := SeriesCoefficient[x/(1 - x - x^4)/(1 - x)^(k - 1), {x, 0, n}]; Table[a[n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 05 2013 *)
CROSSREFS
Columns 0-9 give: A017898(n-1) for n>0, A003269, A098578, A145131, A145132, A145133, A145134, A145135, A145136, A145137.
Main diagonal gives: A145138.
Antidiaginal sums give: A145139.
Numerators/denominators of polynomials for rows give: A145140/A145141.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved
Triangle T(k,m), k>= - 3, 1<=m<=k + 4, read by rows: T(k,m) is the coefficient of a_k(n - m) in the recursive evaluation of a_k(n), where a_k is the k - th column sequence of A145153.
+10
9
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 2, -1, 0, 1, -1, 0, 3, -3, 1, 1, -2, 1, 0, 4, -6, 4, 0, -3, 3, -1, 0, 5, -10, 10, -4, -3, 6, -4, 1, 0, 6, -15, 20, -14, 1, 9, -10, 5, -1, 0, 7, -21, 35, -34, 15, 8, -19, 15, -6, 1, 0, 8, -28, 56, -69, 49, -7, -27, 34, -21, 7, -1, 0, 9, -36, 84
OFFSET
-3,16
COMMENTS
Rows -3<=k<0 are used to form the shape of a perfect triangle.
LINKS
EXAMPLE
Row k=1 gives [1, 0, 0, 1, 0], so A145153(1,5) = A145153(1,4) + A145153(1,1) = 2.
Triangle begins:
0;
0, 0;
0, 0, 0;
1, 0, 0, 1;
1, 0, 0, 1, 0;
2, -1, 0, 1, -1, 0;
3, -3, 1, 1, -2, 1, 0;
MAPLE
cor:= proc(k) option remember; `if`(k<=0, [1, 0, 0, 1], [seq(coeff( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]) end: T:= proc(k, m) local l, j; l:= cor(k); `if`(k<0 or m<0 or m>nops(l), 0, l[m]) end: seq(seq(T(k, m), m=1..k+4), k=-3..13);
MATHEMATICA
cor[k_] := cor[k] = If[k <= 0, {1, 0, 0, 1}, Table[Coefficient[-(1-x-x^4)*(1-x)^(k-1), x, j], {j, 1, k+3}]]; T[k_, m_] := Module[{l, j}, l = cor[k]; If[k<0 || m<0 || m>Length[l], 0, l[[m]]]]; Table[Table[T[k, m], {m, 1, k+4}], {k, -3, 13}] // Flatten (* Jean-François Alcover, Jan 15 2014, translated from Maple *)
KEYWORD
sign,tabl
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved
Main diagonal of square array A145153.
+10
2
0, 1, 2, 6, 20, 71, 259, 960, 3597, 13586, 51635, 197223, 756380, 2910707, 11233311, 43460144, 168502849, 654547456, 2546819347, 9924285801, 38723794820, 151278566731, 591628491483, 2316065644414, 9074988880769, 35587925333525, 139666503235814, 548516611541343
OFFSET
0,3
LINKS
FORMULA
a(n) = [x^n] x/((1-x-x^4)*(1-x)^(n-1)).
MAPLE
a:= n-> coeftayl(x/(1-x-x^4)/(1-x)^(n-1), x=0, n):
seq(a(n), n=0..30);
# second Maple program:
a:= proc(n) option remember; `if`(n<5, n*(n+1)*(n^2-4*n+6)/6,
a(n-4)+(2*(35*n^3-207*n^2+310*n-78)*a(n-1)-(203*n^3
-1244*n^2+1891*n-130)*a(n-2)+(2*n-7)*(7*n-19)*n*
(10*a(n-3)-2*a(n-5)))/((7*n-26)*(n-1)^2))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 18 2019
MATHEMATICA
a[n_] := SeriesCoefficient[x/(1-x-x^4)/(1-x)^(n-1), {x, 0, n}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 10 2022 *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved
Antidiagonal sums of A145153.
+10
2
0, 1, 1, 2, 4, 9, 18, 36, 72, 145, 291, 583, 1167, 2336, 4675, 9354, 18713, 37433, 74876, 149766, 299551, 599128, 1198292, 2396634, 4793337, 9586769, 19173669, 38347519, 76695288, 153390921, 306782318, 613565293, 1227131493, 2454264238
OFFSET
0,4
FORMULA
G.f.: x*(1-x)^2 / ((1-2*x)*(1-x-x^4)).
MAPLE
a:= n-> (Matrix([[4, 2, 1, 1, 0]]). Matrix (5, (i, j)-> if i=j-1 then 1 elif j=1 then [3, -2, 0, 1, -2][i] else 0 fi)^n)[1, 5]: seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x*(1-x)^2/((1-2*x)*(1-x-x^4)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
PROG
(PARI) my(x='x+O('x^40)); concat([0], Vec(x*(1-x)^2/((1-2*x)*(1-x-x^4)))) \\ G. C. Greubel, May 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-x)^2/((1-2*x)*(1-x-x^4)) )); // G. C. Greubel, May 21 2019
(Sage) (x*(1-x)^2/((1-2*x)*(1-x-x^4))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 21 2019
(GAP) a:=[0, 1, 1, 2, 4];; for n in [6..40] do a[n]:=3*a[n-1]-2*a[n-2]+a[n-4] -2*a[n-5]; od; a; # G. C. Greubel, May 21 2019
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved

Search completed in 0.005 seconds