[go: up one dir, main page]

login
A145139
Antidiagonal sums of A145153.
2
0, 1, 1, 2, 4, 9, 18, 36, 72, 145, 291, 583, 1167, 2336, 4675, 9354, 18713, 37433, 74876, 149766, 299551, 599128, 1198292, 2396634, 4793337, 9586769, 19173669, 38347519, 76695288, 153390921, 306782318, 613565293, 1227131493, 2454264238
OFFSET
0,4
FORMULA
G.f.: x*(1-x)^2 / ((1-2*x)*(1-x-x^4)).
MAPLE
a:= n-> (Matrix([[4, 2, 1, 1, 0]]). Matrix (5, (i, j)-> if i=j-1 then 1 elif j=1 then [3, -2, 0, 1, -2][i] else 0 fi)^n)[1, 5]: seq(a(n), n=0..40);
MATHEMATICA
CoefficientList[Series[x*(1-x)^2/((1-2*x)*(1-x-x^4)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 06 2013 *)
PROG
(PARI) my(x='x+O('x^40)); concat([0], Vec(x*(1-x)^2/((1-2*x)*(1-x-x^4)))) \\ G. C. Greubel, May 21 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-x)^2/((1-2*x)*(1-x-x^4)) )); // G. C. Greubel, May 21 2019
(Sage) (x*(1-x)^2/((1-2*x)*(1-x-x^4))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 21 2019
(GAP) a:=[0, 1, 1, 2, 4];; for n in [6..40] do a[n]:=3*a[n-1]-2*a[n-2]+a[n-4] -2*a[n-5]; od; a; # G. C. Greubel, May 21 2019
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved