OFFSET
1,5
COMMENTS
For the series expansion of the cosine lemniscate cl(x) see A159600. The lemniscatic functions sl(x) and cl(x) played a significant role in the development of mathematics in the 18th and 19th centuries. They were the first examples of elliptic functions. In algebraic number theory all abelian extensions of the Gaussian rationals Q(i) are contained in extensions of Q(i) generated by division values of the lemniscatic functions. - Peter Bala, Aug 25 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..229
S. Binski and T. R. Hagedorn, Constructions on the Lemniscate
Zachary P. Bradshaw and Christophe Vignat, Berndt-type Integrals: Unveiling Connections with Barnes Zeta and Jacobi Elliptic Functions, arXiv:2407.02365 [math.CA], 2024. See p. 9.
Diego Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions, arXiv:math/0501052v2 [math.CA], 2005.
A. Gritsans and F. Sadyrbaev, Trigonometry of lemniscatic functions
A. Gritsans and F. Sadyrbaev, Lemniscatic functions in the theory of the Emden-Fowler differential equation
Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
Erik Vigren and Andreas Dieckmann, Simple Solutions of Lattice Sums for Electric Fields Due to Infinitely Many Parallel Line Charges, Symmetry (2020) Vol. 12, No. 6, 1040.
Eric W. Weisstein, Lemniscate Function
FORMULA
From Peter Bala, Aug 25 2011: (Start)
The function sl(x) satisfies the differential equation sl''(x) = -2*sl^3(x) with initial conditions sl(0) = 0, sl'(0) = 1.
Recurrence relation:
a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k).
The inverse of the sine lemniscate function may be defined as the algebraic integral
sl^(-1)(x) := Integral_{s=0..x} 1/sqrt(1-s^4) ds = x + x^5/10 + x^9/24 + 5*x^13/208 + ....
Series reversion produces the expansion
sl(x) = x - 12*x^5/5! + 3024*x^9/9! - 4390848*x^13/13! + ....
The coefficients in this expansion can be calculated using nested derivatives as follows (see [Dominici, Theorem 4.1]): Let f(x) = sqrt(1-x^4). Define the nested derivative D^n[f](x) by means of the recursion
D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0.
The coefficients in the expansion of D^n[f](x) in powers of f(x) are given in A145271. Then we have a(n) = D^(n-1)[f](0).
a(n) is divisible by 12^n and a(n)/12^n produces (a signed and aerated version of) A144853(n).
(End)
The function sl(x) satisfies the differential equation sl'(x)^2 + sl(x)^4 = 1 with initial conditions sl(0) = 0, sl'(0) = 1. - Michael Somos, Oct 12 2019
EXAMPLE
G.f. = x - 12*x^5 + 3024*x^9 - 4390848*x^13 + 21224560896*x^17 + ...
Example of the recurrence relation a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k) for n = 13:
There are only 6 compositions of 13-2 = 11 that give a nonzero contribution to the sum, namely 11 = 9+1+1 = 1+9+1 = 1+1+9 and 11 = 5+5+1 = 5+1+5 = 1+5+5
and hence
a(13) = -2*(3*11!/(9!*1!*1*)*a(9)*a(1)*a(1)+3*11!/(5!*5!*1!)*a(5)*a(5)*a(1)) = -4390848.
MATHEMATICA
Drop[ Range[0, 37]! CoefficientList[ InverseSeries[ Series[ Integrate[1/(1 - x^4)^(1/2), x], {x, 0, 37}]], x], 1] (* Robert G. Wilson v, Mar 16 2005 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSD[x, 1/2] 2^((n - 1)/2), {x, 0, n}]]; (* Michael Somos, Jan 17 2017 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSN[x, -1], {x, 0, n}]]; (* Michael Somos, May 26 2021 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(serreverse( intformal(1/sqrt(1-x^4))))) \\ Joerg Arndt, Mar 24 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Troy Kessler (tkessler1977(AT)netzero.com), Mar 13 2005
EXTENSIONS
More terms from Robert G. Wilson v, Mar 16 2005
a(37)- a(39) by Vincenzo Librandi, Mar 24 2017
STATUS
approved