[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a144853 -id:a144853
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of the sine lemniscate function sl(x).
+10
8
1, 0, 0, 0, -12, 0, 0, 0, 3024, 0, 0, 0, -4390848, 0, 0, 0, 21224560896, 0, 0, 0, -257991277243392, 0, 0, 0, 6628234834692624384, 0, 0, 0, -319729080846260095008768, 0, 0, 0, 26571747463798134334265819136, 0, 0, 0, -3564202847752289659513902717468672, 0, 0
OFFSET
1,5
COMMENTS
For the series expansion of the cosine lemniscate cl(x) see A159600. The lemniscatic functions sl(x) and cl(x) played a significant role in the development of mathematics in the 18th and 19th centuries. They were the first examples of elliptic functions. In algebraic number theory all abelian extensions of the Gaussian rationals Q(i) are contained in extensions of Q(i) generated by division values of the lemniscatic functions. - Peter Bala, Aug 25 2011
LINKS
S. Binski and T. R. Hagedorn, Constructions on the Lemniscate
Zachary P. Bradshaw and Christophe Vignat, Berndt-type Integrals: Unveiling Connections with Barnes Zeta and Jacobi Elliptic Functions, arXiv:2407.02365 [math.CA], 2024. See p. 9.
A. Gritsans and F. Sadyrbaev, Trigonometry of lemniscatic functions
Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
Erik Vigren and Andreas Dieckmann, Simple Solutions of Lattice Sums for Electric Fields Due to Infinitely Many Parallel Line Charges, Symmetry (2020) Vol. 12, No. 6, 1040.
Eric W. Weisstein, Lemniscate Function
FORMULA
From Peter Bala, Aug 25 2011: (Start)
The function sl(x) satisfies the differential equation sl''(x) = -2*sl^3(x) with initial conditions sl(0) = 0, sl'(0) = 1.
Recurrence relation:
a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k).
The inverse of the sine lemniscate function may be defined as the algebraic integral
sl^(-1)(x) := Integral_{s=0..x} 1/sqrt(1-s^4) ds = x + x^5/10 + x^9/24 + 5*x^13/208 + ....
Series reversion produces the expansion
sl(x) = x - 12*x^5/5! + 3024*x^9/9! - 4390848*x^13/13! + ....
The coefficients in this expansion can be calculated using nested derivatives as follows (see [Dominici, Theorem 4.1]): Let f(x) = sqrt(1-x^4). Define the nested derivative D^n[f](x) by means of the recursion
D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0.
The coefficients in the expansion of D^n[f](x) in powers of f(x) are given in A145271. Then we have a(n) = D^(n-1)[f](0).
a(n) is divisible by 12^n and a(n)/12^n produces (a signed and aerated version of) A144853(n).
(End)
The function sl(x) satisfies the differential equation sl'(x)^2 + sl(x)^4 = 1 with initial conditions sl(0) = 0, sl'(0) = 1. - Michael Somos, Oct 12 2019
EXAMPLE
G.f. = x - 12*x^5 + 3024*x^9 - 4390848*x^13 + 21224560896*x^17 + ...
Example of the recurrence relation a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k) for n = 13:
There are only 6 compositions of 13-2 = 11 that give a nonzero contribution to the sum, namely 11 = 9+1+1 = 1+9+1 = 1+1+9 and 11 = 5+5+1 = 5+1+5 = 1+5+5
and hence
a(13) = -2*(3*11!/(9!*1!*1*)*a(9)*a(1)*a(1)+3*11!/(5!*5!*1!)*a(5)*a(5)*a(1)) = -4390848.
MATHEMATICA
Drop[ Range[0, 37]! CoefficientList[ InverseSeries[ Series[ Integrate[1/(1 - x^4)^(1/2), x], {x, 0, 37}]], x], 1] (* Robert G. Wilson v, Mar 16 2005 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSD[x, 1/2] 2^((n - 1)/2), {x, 0, n}]]; (* Michael Somos, Jan 17 2017 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSN[x, -1], {x, 0, n}]]; (* Michael Somos, May 26 2021 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(serreverse( intformal(1/sqrt(1-x^4))))) \\ Joerg Arndt, Mar 24 2017
CROSSREFS
Cf. A144849, A144853, A159600 (cosine lemniscate).
Taking every fourth term gives A283831.
Cf. A242240.
KEYWORD
sign
AUTHOR
Troy Kessler (tkessler1977(AT)netzero.com), Mar 13 2005
EXTENSIONS
More terms from Robert G. Wilson v, Mar 16 2005
a(37)- a(39) by Vincenzo Librandi, Mar 24 2017
STATUS
approved
Coefficients in the expansion of the squared sine lemniscate function
+10
4
1, 6, 336, 77616, 50916096, 76307083776, 226653840838656, 1207012936807028736, 10696277678308486742016, 148900090457044541209706496, 3110043187741674836967136690176, 93885206124269301790338015801901056, 3970859549814416912519992571903015387136
OFFSET
0,2
COMMENTS
Denoted by \beta_n in Lomont and Brillhart (2011) on page xiii.
Gives the number of Increasing bilabeled strict binary trees with 4n+2 labels. - Markus Kuba, Nov 18 2014
REFERENCES
J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 86.
LINKS
O. Bodini, M. Dien, X. Fontaine, A. Genitrini, and H. K. Hwang, Increasing Diamonds, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp 207-219 2016 DOI 10.1007/978-3-662-49529-2_16; Lecture Notes in Computer Science Series Volume 9644.
Markus Kuba, Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], (17-November-2014).
Tanay Wakhare, Christophe Vignat, Taylor coefficients of the Jacobi theta3(q) function, arXiv:1909.01508 [math.NT], 2019.
Eric Weisstein's World of Mathematics, Lemniscate Constant
FORMULA
E.g.f.: sl(x)^2 = 2 Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 2) / (4*k + 2)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - Michael Somos, Apr 25 2011
a(0) = 1, a(n + 1) = Sum_{j=0..n} binomial( 4*n + 4, 4*j + 2) * a(j) * a(n - j).
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b(n) = A139757(n) * n/3. - Michael Somos, Jan 03 2013
E.g.f.: Increasing bilabeled strict binary trees of 2n+2 labels (including the zeros): T(z)=Sum_{n>=1}T_n z^{2n}/(2n)! = 6/sqrt(3)*WeierstrassP(3^{-1/4}z+LemniscateConstant; g_2,g_3), with g_2=-1 and g_3=0; alternatively, T(z)=sqrt(3)*i*sl^2(z/(3^{1/4}(1+i))). - Markus Kuba, Nov 18 2014
EXAMPLE
G.f. = 1 + 6*x + 336*x^2 + 77616*x^3 + 50916096*x^4 + ...
MAPLE
a[0]:=1; b[0]:=1;
for n from 1 to 15 do b[n]:=add(binomial(4*n, 4*j+2)*b[j]*b[n-1-j], j=0..n-1);
a[n]:=(1/3)*add(binomial(4*n-1, 4*j+1)*a[j]*b[n-1-j], j=0..n-1); od:
tb:=[seq(b[n], n=0..15)];
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ JacobiSD[ x, 1/2]^2, {x, 0, m}] / (2 (-3)^n)]]; (* Michael Somos, Apr 25 2011 *)
a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 2}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]]^2 / 2, {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
a[ n_] := If[ n < 1, Boole[n == 0], Sum[ Binomial[ 4 n, 4 j + 2] a[j] a[ n - 1 - j], {j, 0, n - 1}]]; (* Michael Somos, Apr 25 2011 *)
a[ n_] := If[n < 0, 0, With[{m = 4*n + 2}, m!*SeriesCoefficient[JacobiSN[x, -1]^2, {x, 0, m}]/(2*(-12)^n)]]; (* Michael Somos, Jul 10 2024 *)
PROG
(PARI) {a(n) = my(m); if( n<0, 0, m = 4*n + 2; m! * polcoeff( (serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))))^2 / 2, m))}; /* Michael Somos, Apr 25 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 12 2009
STATUS
approved
a(n) = n^2 * (4*n^2 - 1) / 3.
+10
3
0, 1, 20, 105, 336, 825, 1716, 3185, 5440, 8721, 13300, 19481, 27600, 38025, 51156, 67425, 87296, 111265, 139860, 173641, 213200, 259161, 312180, 372945, 442176, 520625, 609076, 708345, 819280, 942761, 1079700, 1231041, 1397760, 1580865, 1781396, 2000425
OFFSET
0,3
LINKS
P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
FORMULA
G.f.: x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5.
a(n) = a(-n) for all n in Z.
a(n) = n * A000447(n).
G.f. A144853(x) = 1 / (1 - a(1)*x / (1 - a(2)*x / (1 - a(3)*x / ... ))).
EXAMPLE
G.f. = x + 20*x^2 + 105*x^3 + 336*x^4 + 825*x^5 + 1716*x^6 + 3185*x^7 + ...
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 20, 105, 336}, 40] (* Harvey P. Dale, Mar 26 2016 *)
a[ n_] := SeriesCoefficient[ x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5, {x, 0, Abs[n]}]; (* Michael Somos, Dec 26 2016 *)
PROG
(PARI) {a(n) = polcoeff( x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5 + x * O(x^n), abs(n))};
(Maxima) A187756(n):=n^2*(4*n^2-1)/3$ makelist(A187756(n), n, 0, 20); /* Martin Ettl, Jan 07 2013 */
(Magma) [n^2*(4*n^2-1)/3: n in [0..50]]; // G. C. Greubel, Aug 10 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jan 03 2013
STATUS
approved
Coefficients in the expansion of sn(t * x, m) / t in powers of x where t = sqrt( -1/2 - sqrt(1/6)), m = 5 - sqrt(24), and sn() is a Jacobi elliptic function.
+10
1
1, 1, 2, 12, 124, 1844, 39288, 1134928, 42346256, 1985443536, 114380311072, 7938644848832, 653292526793664, 62901472582993984, 7005466255571255168, 893590563265303934208, 129425758313629525647616, 21124489015640181154724096, 3859303832272520341300756992
OFFSET
0,3
FORMULA
The e.g.f. A(x) = y satisfies 0 = 2 - 2 * y'*y' + y*y'' + y^2.
The e.g.f. A(x) satisfies 0 = A(x) * A(y) * A(x-y) + A(y) * A(z) * A(y-z) - A(x) * A(z) * A(x-z) - A(x-y) * A(x-z) * A(y-z) for all x, y, z.
E.g.f.: Sum_{k>=0} a(k) * x^(2*k+1) / (2*k+1)! = sn(t * x, m) / t where t = sqrt( -1/2 - sqrt(1/6)), m = 5 - sqrt(24), and sn() is a Jacobi elliptic function.
EXAMPLE
G.f. = 1 + x + 2*x^2 + 12*x^3 + 124*x^4 + 1844*x^5 + 39288*x^6 + ...
E.g.f. = x + x^3/6 + x^5/60 + x^7/420 + 31*x^9/90720 + 461*x^11/9979200 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[{t = Sqrt[-1/2 - Sqrt[1/6]], m = 5 - Sqrt[24]}, SeriesCoefficient[ JacobiSN[ t x, m] / t, {x, 0, 2 n + 1}] (2 n + 1)! // Simplify]];
PROG
(PARI) {a(n) = my(A, c); if( n<0, 0, A = x + x^3/6 + x^5/60; for(k=3, n, A += O(x^(2*k+2)); A = x + intformal( intformal( 2*(A'^2 - 1) / A - A)); c = polcoeff( A, 2*k + 1) * k / (k-2); A = truncate( A + O(x^(2*k))) + c * x^(2*k+1)); (2*n + 1)! * polcoeff( A, 2*n + 1))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, May 02 2015
STATUS
approved
Coefficients in the expansion of sn(t * x, m) / t in powers of x where t = sqrt( -1/2 - sqrt(1/3)), m = -7 + sqrt(48), and sn() is a Jacobi elliptic function.
+10
1
1, 1, 0, -10, -80, 0, 17600, 418000, 0, -496672000, -23576960000, 0, 91442700800000, 7255463564800000, 0, -69994087116448000000, -8354181454767104000000, 0, 169165728883243642880000000, 28336045031124313753600000000, 0, -1072156342430107319243161600000000
OFFSET
0,4
FORMULA
The e.g.f. A(x) = y satisfies 0 = 2 - 2 * y'*y' + y*y'' + y^2.
The e.g.f. A(x) satisfies 0 = A(x) * A(y) * A(x-y) + A(y) * A(z) * A(y-z) - A(x) * A(z) * A(x-z) - A(x-y) * A(x-z) * A(y-z) for all x, y, z.
E.g.f.: Sum_{k>=0} a(k) * x^(2*k+1) / (2*k+1)! = sn(t * x, m) / t where t = sqrt( -1/2 - sqrt(1/3)), m = -7 + sqrt(48), and sn() is a Jacobi elliptic function.
a(3*n + 2) = 0. a(n) = (-1)^floor(n/3) * A063902(n) unless n == 2 (mod 3).
EXAMPLE
G.f. = 1 + x - 10*x^3 - 80*x^4 + 17600*x^6 + 418000*x^7 - 496672000*x^9 - ...
E.g.f. = x + x^3/6 - x^7/504 - x^9/4536 + x^13/353808 + 19/59439744*x^15 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[{t = Sqrt[-1/2 - Sqrt[1/3]], m = -7 + Sqrt[48]}, SeriesCoefficient[ JacobiSN[ t x, m] / t, {x, 0, 2 n + 1}] (2 n + 1)! // Simplify]];
PROG
(PARI) {a(n) = my(A, c); if( n<0, 0, A = x + x^3/6; for(k=3, n, A += O(x^(2*k+2)); A = x + intformal( intformal( 2*(A'^2 - 1) / A - A)); c = polcoeff( A, 2*k + 1) * k / (k-2); A = truncate( A + O(x^(2*k))) + c * x^(2*k+1)); (2*n + 1)! * polcoeff( A, 2*n + 1))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 02 2015
STATUS
approved

Search completed in 0.008 seconds