[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a144849 -id:a144849
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of the sine lemniscate function sl(x).
+10
8
1, 0, 0, 0, -12, 0, 0, 0, 3024, 0, 0, 0, -4390848, 0, 0, 0, 21224560896, 0, 0, 0, -257991277243392, 0, 0, 0, 6628234834692624384, 0, 0, 0, -319729080846260095008768, 0, 0, 0, 26571747463798134334265819136, 0, 0, 0, -3564202847752289659513902717468672, 0, 0
OFFSET
1,5
COMMENTS
For the series expansion of the cosine lemniscate cl(x) see A159600. The lemniscatic functions sl(x) and cl(x) played a significant role in the development of mathematics in the 18th and 19th centuries. They were the first examples of elliptic functions. In algebraic number theory all abelian extensions of the Gaussian rationals Q(i) are contained in extensions of Q(i) generated by division values of the lemniscatic functions. - Peter Bala, Aug 25 2011
LINKS
S. Binski and T. R. Hagedorn, Constructions on the Lemniscate
Zachary P. Bradshaw and Christophe Vignat, Berndt-type Integrals: Unveiling Connections with Barnes Zeta and Jacobi Elliptic Functions, arXiv:2407.02365 [math.CA], 2024. See p. 9.
A. Gritsans and F. Sadyrbaev, Trigonometry of lemniscatic functions
Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
Erik Vigren and Andreas Dieckmann, Simple Solutions of Lattice Sums for Electric Fields Due to Infinitely Many Parallel Line Charges, Symmetry (2020) Vol. 12, No. 6, 1040.
Eric W. Weisstein, Lemniscate Function
FORMULA
From Peter Bala, Aug 25 2011: (Start)
The function sl(x) satisfies the differential equation sl''(x) = -2*sl^3(x) with initial conditions sl(0) = 0, sl'(0) = 1.
Recurrence relation:
a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k).
The inverse of the sine lemniscate function may be defined as the algebraic integral
sl^(-1)(x) := Integral_{s=0..x} 1/sqrt(1-s^4) ds = x + x^5/10 + x^9/24 + 5*x^13/208 + ....
Series reversion produces the expansion
sl(x) = x - 12*x^5/5! + 3024*x^9/9! - 4390848*x^13/13! + ....
The coefficients in this expansion can be calculated using nested derivatives as follows (see [Dominici, Theorem 4.1]): Let f(x) = sqrt(1-x^4). Define the nested derivative D^n[f](x) by means of the recursion
D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0.
The coefficients in the expansion of D^n[f](x) in powers of f(x) are given in A145271. Then we have a(n) = D^(n-1)[f](0).
a(n) is divisible by 12^n and a(n)/12^n produces (a signed and aerated version of) A144853(n).
(End)
The function sl(x) satisfies the differential equation sl'(x)^2 + sl(x)^4 = 1 with initial conditions sl(0) = 0, sl'(0) = 1. - Michael Somos, Oct 12 2019
EXAMPLE
G.f. = x - 12*x^5 + 3024*x^9 - 4390848*x^13 + 21224560896*x^17 + ...
Example of the recurrence relation a(n+2) = -2*sum {i+j+k = n} n!/(i!*j!*k!)*a(i)*a(j)*a(k) for n = 13:
There are only 6 compositions of 13-2 = 11 that give a nonzero contribution to the sum, namely 11 = 9+1+1 = 1+9+1 = 1+1+9 and 11 = 5+5+1 = 5+1+5 = 1+5+5
and hence
a(13) = -2*(3*11!/(9!*1!*1*)*a(9)*a(1)*a(1)+3*11!/(5!*5!*1!)*a(5)*a(5)*a(1)) = -4390848.
MATHEMATICA
Drop[ Range[0, 37]! CoefficientList[ InverseSeries[ Series[ Integrate[1/(1 - x^4)^(1/2), x], {x, 0, 37}]], x], 1] (* Robert G. Wilson v, Mar 16 2005 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSD[x, 1/2] 2^((n - 1)/2), {x, 0, n}]]; (* Michael Somos, Jan 17 2017 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ JacobiSN[x, -1], {x, 0, n}]]; (* Michael Somos, May 26 2021 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(serreverse( intformal(1/sqrt(1-x^4))))) \\ Joerg Arndt, Mar 24 2017
CROSSREFS
Cf. A144849, A144853, A159600 (cosine lemniscate).
Taking every fourth term gives A283831.
Cf. A242240.
KEYWORD
sign
AUTHOR
Troy Kessler (tkessler1977(AT)netzero.com), Mar 13 2005
EXTENSIONS
More terms from Robert G. Wilson v, Mar 16 2005
a(37)- a(39) by Vincenzo Librandi, Mar 24 2017
STATUS
approved
Coefficients in the expansion of the sine lemniscate function.
+10
6
1, 1, 21, 2541, 1023561, 1036809081, 2219782435101, 8923051855107621, 61797392100611962641, 690766390156657904866161, 11839493254591562294152214181, 298556076626963858753929987732701, 10706038142052878970311146962646277721, 530588758323899225681861502684757146635241
OFFSET
0,3
COMMENTS
Denoted \alpha_n by Lomont and Brillhart on page xii.
REFERENCES
J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 87.
FORMULA
E.g.f.: sl(x) = Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 1) / (4*k + 1)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - Michael Somos, Apr 25 2011
a(0) = 1, a(n + 1) = (1 / 3) * Sum_{j=0..n} binomial( 4*n + 3, 4*j + 1) * a(j) * b(n - j) where b() is A144849.
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A187756. - Michael Somos, Jan 03 2013
EXAMPLE
G.f. = 1 + x + 21*x^2 + 2541*x^3 + 1023561*x^4 + 1036809081*x^5 + ...
MAPLE
for n from 1 to 15 do b[n]:=add(binomial(4*n, 4*j+2)*b[j]*b[n-1-j], j=0..n-1);
a[n]:=(1/3)*add(binomial(4*n-1, 4*j+1)*a[j]*b[n-1-j], j=0..n-1); od:
ta:=[seq(a[n], n=0..15)];
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 1}, m! SeriesCoefficient[ JacobiSD[ x, 1/2], {x, 0, m}] / (-3)^n]]; (* Michael Somos, Apr 25 2011 *)
a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 1}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]], {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
PROG
(PARI) {a(n) = my(m); if( n<0, 0, m = 4*n + 1; m! * polcoeff( serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))), m))}; /* Michael Somos, Apr 25 2011 */
(PARI) {a(n) = my(A, m); if( n<0, 0, m = 4*n + 1; A = O(x); for( k=0, n, A = x + intformal( intformal( A^3 / 6))); m! * polcoeff( A, m))}; /* Michael Somos, Apr 25 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 12 2009
STATUS
approved
Coefficients arising from expansion of 1/(2*P(u)) in powers of u, where P is the Weierstrass P-function.
+10
1
1, -72, 48384, -134120448, 1055796166656, -18987644270149632, 676784742282773397504, -43249455805185586718834688, 4599203617006025540525554139136, -768291761151281123722697889747566592, 192565676807771292904270021964021234663424
OFFSET
0,2
COMMENTS
This is for the lemniscate case where g2=4, g3=0. - Michael Somos, Jul 10 2024
LINKS
A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII. [Annotated scanned copy] See Eq. (16) and Table III.
Tanay Wakhare and Christophe Vignat, Taylor coefficients of the Jacobi theta3(q) function, arXiv:1909.01508 [math.NT], 2019.
FORMULA
Hurwitz (Eq. (84)) gives a recurrence.
a(n) = (-12)^n * A144849(n). - R. J. Mathar, Aug 03 2015
MAPLE
A260779 := proc(n)
option remember;
if n = 0 then
1;
else
a :=0 ;
for r from 0 to n-1 do
s := n-1-r ;
if s >=0 and s <= n-1 then
a := a+procname(r)*procname(s) *binomial(4*n, 4*r+2) ;
end if;
end do:
a*(-12) ;
end if;
end proc: # R. J. Mathar, Aug 03 2015
MATHEMATICA
Block[{a}, a[n_] := If[n < 1, Boole[n == 0], Sum[Binomial[4 n, 4 j + 2] a[j] a[n - 1 - j], {j, 0, n - 1}]]; Array[(-12)^#*a[#] &, 11, 0]] (* Michael De Vlieger, Nov 20 2019, after Harvey P. Dale at A144849 *)
a[ n_] := If[n<0, 0, With[{m = 4*n+2}, m!/2*SeriesCoefficient[ 1/WeierstrassP[u, {4, 0}], {u, 0, m}]]]; (* Michael Somos, Jul 10 2024 *)
CROSSREFS
Cf. A144849.
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Aug 02 2015
STATUS
approved

Search completed in 0.006 seconds