[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144853
Coefficients in the expansion of the sine lemniscate function.
6
1, 1, 21, 2541, 1023561, 1036809081, 2219782435101, 8923051855107621, 61797392100611962641, 690766390156657904866161, 11839493254591562294152214181, 298556076626963858753929987732701, 10706038142052878970311146962646277721, 530588758323899225681861502684757146635241
OFFSET
0,3
COMMENTS
Denoted \alpha_n by Lomont and Brillhart on page xii.
REFERENCES
J. S. Lomont and J. Brillhart, Elliptic Polynomials, Chapman and Hall, 2001; see p. 87.
FORMULA
E.g.f.: sl(x) = Sum_{k>=0} (-12)^k * a(k) * x^(4*k + 1) / (4*k + 1)! where sl(x) = sin lemn(x) is the sine lemniscate function of Gauss. - Michael Somos, Apr 25 2011
a(0) = 1, a(n + 1) = (1 / 3) * Sum_{j=0..n} binomial( 4*n + 3, 4*j + 1) * a(j) * b(n - j) where b() is A144849.
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A187756. - Michael Somos, Jan 03 2013
EXAMPLE
G.f. = 1 + x + 21*x^2 + 2541*x^3 + 1023561*x^4 + 1036809081*x^5 + ...
MAPLE
for n from 1 to 15 do b[n]:=add(binomial(4*n, 4*j+2)*b[j]*b[n-1-j], j=0..n-1);
a[n]:=(1/3)*add(binomial(4*n-1, 4*j+1)*a[j]*b[n-1-j], j=0..n-1); od:
ta:=[seq(a[n], n=0..15)];
MATHEMATICA
a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 1}, m! SeriesCoefficient[ JacobiSD[ x, 1/2], {x, 0, m}] / (-3)^n]]; (* Michael Somos, Apr 25 2011 *)
a[ n_] := If[ n < 0, 0, With[ {m = 4 n + 1}, m! SeriesCoefficient[ InverseSeries[ Integrate[ Series[ (1 + x^4 / 12) ^ (-1/2), {x, 0, m + 1}], x]], {x, 0, m}]]]; (* Michael Somos, Apr 25 2011 *)
PROG
(PARI) {a(n) = my(m); if( n<0, 0, m = 4*n + 1; m! * polcoeff( serreverse( intformal( (1 + x^4 / 12 + x * O(x^m)) ^ (-1/2))), m))}; /* Michael Somos, Apr 25 2011 */
(PARI) {a(n) = my(A, m); if( n<0, 0, m = 4*n + 1; A = O(x); for( k=0, n, A = x + intformal( intformal( A^3 / 6))); m! * polcoeff( A, m))}; /* Michael Somos, Apr 25 2011 */
CROSSREFS
Sequence in context: A172622 A172675 A068254 * A131314 A225686 A221779
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 12 2009
STATUS
approved