[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a144683 -id:a144683
     Sort: relevance | references | number | modified | created      Format: long | short | data
E.g.f. satisfies: A(x/A(x)) = exp(x).
+10
6
1, 1, 3, 22, 305, 6656, 204337, 8226436, 414585425, 25315924960, 1828704716801, 153433983789164, 14739472821255481, 1602471473448455104, 195300935112810494801, 26470100501608768436716
OFFSET
0,3
LINKS
FORMULA
E.g.f. satisfies: A(x) = exp( x*A(log A(x)) ).
E.g.f. satisfies: a(n+1) = [x^n/n!] exp(x)*A(x)^(n+1).
E.g.f: A(x) = G(2x)^(1/2) where G(x/G(x)^2) = exp(x) and G(x) is the e.g.f. of A144682.
E.g.f: A(x) = G(3x)^(1/3) where G(x/G(x)^3) = exp(x) and G(x) is the e.g.f. of A144683.
E.g.f: A(x) = G(4x)^(1/4) where G(x/G(x)^4) = exp(x) and G(x) is the e.g.f. of A144684.
E.g.f: A(x) = 1/G(-x) where G(x*G(x)) = exp(x) and G(x) is the e.g.f. of A087961.
E.g.f. A(log(A(x))) = log(A(x))/x = G(x) is the e.g.f of A140049 where G(x) satisfies G(x*exp(-x*G(x))) = exp(x*G(x)).
EXAMPLE
E.g.f. A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 305*x^4/4! +...
A(x/A(x)) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! +...
1/A(x) = 1 + x - x^2/2! + 10*x^3/3! - 159*x^4/4! + 3816*x^5/5! -+...
A(log(A(x))) = 1 + x + 5*x^2/2! + 55*x^3/3! + 1005*x^4/4! + 26601*x^5/5! +...
ILLUSTRATE FORMULA a(n+1) = [x^n/n!] exp(x)*A(x)^(n+1) as follows.
Form a table of coefficients of x^k/k! in exp(x)*A(x)^n for n>=1, k>=0:
exp(x)*A(x)^1: [(1), 2, 6, 35, 416, 8437, 249340, ...];
exp(x)*A(x)^2: [1,(3), 13, 93, 1145, 22593, 645741, ...];
exp(x)*A(x)^3: [1, 4,(22), 181, 2320, 45199, 1257364, ...];
exp(x)*A(x)^4: [1, 5, 33,(305), 4097, 79825, 2177329, ...];
exp(x)*A(x)^5: [1, 6, 46, 471,(6656), 131001, 3529836, ...];
exp(x)*A(x)^6: [1, 7, 61, 685, 10201,(204337), 5477005, ...];
exp(x)*A(x)^7: [1, 8, 78, 953, 14960, 306643,(8226436), ...]; ...
then the terms along the main diagonal form this sequence shift left.
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(n=0, n, A=exp(serreverse(x/A))); n!*polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x+sum(k=2, n-1, a(k)*x^k/k!)+x*O(x^n)); if(n==0, 1, (n-1)!*polcoeff(exp(x+x*O(x^n))*A^n, n-1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 19 2008
STATUS
approved
E.g.f. satisfies: A(x/A(x)^2) = exp(x).
+10
6
1, 1, 5, 73, 2073, 92481, 5775133, 471058953, 47961475313, 5904863932609, 858738633997941, 144899744540718729, 27970301202134146441, 6106540658691499524993, 1493749158085983126737165
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = exp( x*A(log A(x))^2 ).
E.g.f. satisfies: a(n+1) = [x^n/n!] exp(x)*A(x)^(2*n+2).
E.g.f. A(x) = G(x/2)^2 where G(x/G(x)) = exp(x) and G(x) is the g.f. of A144681.
EXAMPLE
E.g.f. A(x) = 1 + x + 5*x^2/2! + 73*x^3/3! + 2073*x^4/4! +...
ILLUSTRATE FORMULA a(n+1) = [x^n/n!] exp(x)*A(x)^(2*n+2) as follows.
Form a table of coefficients of x^k/k! in exp(x)*A(x)^(2*n) for n>=1, k>=0:
exp(x)*A(x)^2: [(1), 3, 17, 219, 5665, 239283, 14432433, ...];
exp(x)*A(x)^4: [1,(5), 41, 605, 15633, 638325, 37250233, ...];
exp(x)*A(x)^6: [1, 7,(73), 1207, 31825, 1274407, 72322201, ...];
exp(x)*A(x)^8: [1, 9, 113,(2073), 56545, 2249769, 124959057, ...];
exp(x)*A(x)^10:[1, 11, 161, 3251,(92481), 3695451, 202282081, ...];
exp(x)*A(x)^12:[1, 13, 217, 4789, 142705,(5775133), 313637833, ...];
exp(x)*A(x)^14:[1, 15, 281, 6735, 210673, 8688975,(471058953), ...]; ...
then the terms along the main diagonal form this sequence shift left.
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(n=0, n, A=exp(serreverse(x/A^2))); n!*polcoeff(A, n)}
{a(n)=local(A=1+x+sum(k=2, n-1, a(k)*x^k/k!)+x*O(x^n)); if(n==0, 1, (n-1)!*polcoeff(exp(x+x*O(x^n))*A^(2*n), n-1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 19 2008
STATUS
approved
E.g.f. satisfies: A(x/A(x)^4) = exp(x).
+10
3
1, 1, 9, 265, 15281, 1379441, 173762425, 28528990393, 5838405067745, 1443332192692321, 421171717332106601, 142520112730201819625, 55149333235223148407953, 24128837930726025305020369
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = exp( x*A(log A(x))^4 ).
E.g.f. satisfies: a(n+1) = [x^n/n!] exp(x)*A(x)^(4*n+4).
E.g.f. A(x) = G(4x)^(1/4) where G(x/G(x)) = exp(x) and G(x) is the g.f. of A144681.
E.g.f. A(x) = G(2x)^(1/2) where G(x/G(x)^2) = exp(x) and G(x) is the g.f. of A144682.
EXAMPLE
E.g.f. A(x) = 1 + x + 9*x^2/2! + 265*x^3/3! + 15281*x^4/4! +...
ILLUSTRATE FORMULA a(n+1) = [x^n/n!] exp(x)*A(x)^(4*n+4) as follows.
Form a table of coefficients of x^k/k! in exp(x)*A(x)^(4*n) for n>=1, k>=0:
exp(x)*A(x)^4: [(1), 5, 57, 1565, 84017, 7220725, 879058921, ...];
exp(x)*A(x)^8: [1, (9), 145, 4377, 231713, 19222569, 2265114033, ...];
exp(x)*A(x)^12:[1, 13,(265), 8821, 472273, 38328733, 4391383897, ...];
exp(x)*A(x)^16:[1, 17, 417,(15281), 841025, 67630417, 7578669793, ...];
exp(x)*A(x)^20:[1, 21, 601, 24141, (1379441), 111109701, 12258211401, ...];
exp(x)*A(x)^24:[1, 25, 817, 35785, 2135137, (173762425), 18997491601, ...];
exp(x)*A(x)^28:[1, 29, 1065, 50597, 3161873, 261721069,(28528990393), ...]; ...
then the terms along the main diagonal form this sequence shift left.
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(n=0, n, A=exp(serreverse(x/A^4))); n!*polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x+sum(k=2, n-1, a(k)*x^k/k!)+x*O(x^n)); if(n==0, 1, (n-1)!*polcoeff(exp(x+x*O(x^n))*A^(4*n), n-1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 19 2008
STATUS
approved
Expansion of e.g.f. A(x) satisfying A(x/A(x)^2) = exp(x*A(x)).
+10
2
1, 1, 7, 136, 4933, 275536, 21309139, 2137447936, 266227499017, 39924910381312, 7045914488563711, 1437809941831499776, 334581893955246072205, 87792555944973238718464, 25735892905876612366925515, 8363132129019712402301648896, 2992768723058093966270081891089
OFFSET
0,3
COMMENTS
Conjecture: a(n) == 1 (mod 3) for n >= 0.
Conjecture: a(2*n) == 1 (mod 2) for n >= 0.
Conjecture: a(2*n+1) == 0 (mod 2) for n >= 1.
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x/A(x)^2) = exp(x*A(x)).
(2) A(x) = exp(x*B(x)^3) where B(x) = A(x*B(x)^2) = ( (1/x)*Series_Reversion(x/A(x)^2) )^(1/2).
(3) A(x/C(x)^3) = exp(x) where C(x) = A(x/C(x)) = x/Series_Reversion(x*A(x)).
EXAMPLE
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 136*x^3/3! + 4933*x^4/4! + 275536*x^5/5! + 21309139*x^6/6! + 2137447936*x^7/7! + 266227499017*x^8/8! + ...
where A(x/A(x)^2) = exp(x*A(x)) and
exp(x*A(x)) = 1 + x + 3*x^2/2! + 28*x^3/3! + 653*x^4/4! + 28096*x^5/5! + 1833367*x^6/6! + 162874048*x^7/7! + ...
Also,
A(x) = exp(x*B(x)^3) where B(x) = A(x*B(x)^2) begins
B(x) = 1 + x + 11*x^2/2! + 292*x^3/3! + 13149*x^4/4! + 861376*x^5/5! + 75412591*x^6/6! + 8365301568*x^7/7! + ...
B(x)^2 = 1 + 2*x + 24*x^2/2! + 650*x^3/3! + 29360*x^4/4! + 1918482*x^5/5! + 167206144*x^6/6! + ...
B(x)^3 = 1 + 3*x + 39*x^2/2! + 1080*x^3/3! + 49029*x^4/4! + 3199728*x^5/5! + 277840179*x^6/6! + ...
Further,
A(x/C(x)^3) = exp(x) where C(x) = A(x/C(x)) begins
C(x) = 1 + x + 5*x^2/2! + 85*x^3/3! + 2889*x^4/4! + 154441*x^5/5! + 11527693*x^6/6! + 1120674717*x^7/7! + ...
C(x)^3 = 1 + 3*x + 21*x^2/2! + 351*x^3/3! + 11337*x^4/4! + 582843*x^5/5! + 42300765*x^6/6! + ...
PROG
(PARI) {a(n) = my(A=1+x); for(i=0, n, A = exp( x*((1/x)*serreverse( x/(A^2 + x*O(x^n)) ))^(3/2) )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 02 2024
STATUS
approved
Expansion of e.g.f. A(x) satisfying A(x/A(x)) = exp(x*A(x)^2).
+10
2
1, 1, 7, 118, 3457, 150376, 8869249, 669261160, 62084355505, 6878901271024, 890797404903841, 132568595259161656, 22370325575395442473, 4233795107469842535544, 890606081738110684972705, 206651730919408572588445216, 52550877215770005095599441249, 14564273590596678338725804835680
OFFSET
0,3
COMMENTS
Conjecture: a(n) == 1 (mod 3) for n >= 0.
Conjecture: a(2*n) == 1 (mod 2) for n >= 0.
Conjecture: a(2*n+1) == 0 (mod 2) for n >= 1.
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x/A(x)) = exp(x*A(x)^2).
(2) A(x) = exp(x*B(x)^3) where B(x) = A(x*B(x)) = (1/x)*Series_Reversion(x/A(x)).
(3) A(x/C(x)^3) = exp(x) where C(x) = A(x/C(x)^2) = ( x/Series_Reversion(x*A(x)^2) )^(1/2).
EXAMPLE
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 118*x^3/3! + 3457*x^4/4! + 150376*x^5/5! + 8869249*x^6/6! + 669261160*x^7/7! + 62084355505*x^8/8! + ...
where A(x/A(x)) = exp(x*A(x)^2) and
exp(x*A(x)^2) = 1 + x + 5*x^2/2! + 61*x^3/3! + 1377*x^4/4! + 49001*x^5/5! + 2476273*x^6/6! + 165555909*x^7/7! + ...
Also,
A(x) = exp(x*B(x)^3) where B(x) = A(x*B(x)) begins
B(x) = 1 + x + 9*x^2/2! + 187*x^3/3! + 6461*x^4/4! + 320721*x^5/5! + 21079255*x^6/6! + 1741882717*x^7/7! + ...
B(x)^3 = 1 + 3*x + 33*x^2/2! + 729*x^3/3! + 25653*x^4/4! + 1275483*x^5/5! + 83368251*x^6/6! + ...
Further,
A(x/C(x)^3) = exp(x) where C(x) = A(x/C(x)^2) begins
C(x) = 1 + x + 3*x^2/2! + 34*x^3/3! + 809*x^4/4! + 30336*x^5/5! + 1584517*x^6/6! + 107443540*x^7/7! + ...
C(x)^2 = 1 + 2*x + 8*x^2/2! + 86*x^3/3! + 1944*x^4/4! + 70802*x^5/5! + 3628996*x^6/6! + ...
PROG
(PARI) {a(n) = my(A=1+x); for(i=0, n, A = exp( x*((1/x)*serreverse( x/(A + x*O(x^n)) ))^3 )); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 02 2024
STATUS
approved

Search completed in 0.009 seconds