[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A(x/A(x)) = exp(x).
6

%I #11 Oct 02 2024 07:54:20

%S 1,1,3,22,305,6656,204337,8226436,414585425,25315924960,1828704716801,

%T 153433983789164,14739472821255481,1602471473448455104,

%U 195300935112810494801,26470100501608768436716

%N E.g.f. satisfies: A(x/A(x)) = exp(x).

%H Vaclav Kotesovec, <a href="/A144681/b144681.txt">Table of n, a(n) for n = 0..136</a>

%F E.g.f. satisfies: A(x) = exp( x*A(log A(x)) ).

%F E.g.f. satisfies: a(n+1) = [x^n/n!] exp(x)*A(x)^(n+1).

%F E.g.f: A(x) = G(2x)^(1/2) where G(x/G(x)^2) = exp(x) and G(x) is the e.g.f. of A144682.

%F E.g.f: A(x) = G(3x)^(1/3) where G(x/G(x)^3) = exp(x) and G(x) is the e.g.f. of A144683.

%F E.g.f: A(x) = G(4x)^(1/4) where G(x/G(x)^4) = exp(x) and G(x) is the e.g.f. of A144684.

%F E.g.f: A(x) = 1/G(-x) where G(x*G(x)) = exp(x) and G(x) is the e.g.f. of A087961.

%F E.g.f. A(log(A(x))) = log(A(x))/x = G(x) is the e.g.f of A140049 where G(x) satisfies G(x*exp(-x*G(x))) = exp(x*G(x)).

%e E.g.f. A(x) = 1 + x + 3*x^2/2! + 22*x^3/3! + 305*x^4/4! +...

%e A(x/A(x)) = 1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! +...

%e 1/A(x) = 1 + x - x^2/2! + 10*x^3/3! - 159*x^4/4! + 3816*x^5/5! -+...

%e A(log(A(x))) = 1 + x + 5*x^2/2! + 55*x^3/3! + 1005*x^4/4! + 26601*x^5/5! +...

%e ILLUSTRATE FORMULA a(n+1) = [x^n/n!] exp(x)*A(x)^(n+1) as follows.

%e Form a table of coefficients of x^k/k! in exp(x)*A(x)^n for n>=1, k>=0:

%e exp(x)*A(x)^1: [(1), 2, 6, 35, 416, 8437, 249340, ...];

%e exp(x)*A(x)^2: [1,(3), 13, 93, 1145, 22593, 645741, ...];

%e exp(x)*A(x)^3: [1, 4,(22), 181, 2320, 45199, 1257364, ...];

%e exp(x)*A(x)^4: [1, 5, 33,(305), 4097, 79825, 2177329, ...];

%e exp(x)*A(x)^5: [1, 6, 46, 471,(6656), 131001, 3529836, ...];

%e exp(x)*A(x)^6: [1, 7, 61, 685, 10201,(204337), 5477005, ...];

%e exp(x)*A(x)^7: [1, 8, 78, 953, 14960, 306643,(8226436), ...]; ...

%e then the terms along the main diagonal form this sequence shift left.

%o (PARI) {a(n)=local(A=1+x+x*O(x^n));for(n=0,n,A=exp(serreverse(x/A)));n!*polcoeff(A,n)}

%o (PARI) {a(n)=local(A=1+x+sum(k=2,n-1,a(k)*x^k/k!)+x*O(x^n));if(n==0,1,(n-1)!*polcoeff(exp(x+x*O(x^n))*A^n,n-1))}

%Y Cf. A144682, A144683, A144684, A087961, A140049.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Sep 19 2008