[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. A(x) satisfying A(x/A(x)^2) = exp(x*A(x)).
2

%I #12 Jan 04 2024 09:00:45

%S 1,1,7,136,4933,275536,21309139,2137447936,266227499017,

%T 39924910381312,7045914488563711,1437809941831499776,

%U 334581893955246072205,87792555944973238718464,25735892905876612366925515,8363132129019712402301648896,2992768723058093966270081891089

%N Expansion of e.g.f. A(x) satisfying A(x/A(x)^2) = exp(x*A(x)).

%C Conjecture: a(n) == 1 (mod 3) for n >= 0.

%C Conjecture: a(2*n) == 1 (mod 2) for n >= 0.

%C Conjecture: a(2*n+1) == 0 (mod 2) for n >= 1.

%H Paul D. Hanna, <a href="/A368630/b368630.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.

%F (1) A(x/A(x)^2) = exp(x*A(x)).

%F (2) A(x) = exp(x*B(x)^3) where B(x) = A(x*B(x)^2) = ( (1/x)*Series_Reversion(x/A(x)^2) )^(1/2).

%F (3) A(x/C(x)^3) = exp(x) where C(x) = A(x/C(x)) = x/Series_Reversion(x*A(x)).

%e E.g.f.: A(x) = 1 + x + 7*x^2/2! + 136*x^3/3! + 4933*x^4/4! + 275536*x^5/5! + 21309139*x^6/6! + 2137447936*x^7/7! + 266227499017*x^8/8! + ...

%e where A(x/A(x)^2) = exp(x*A(x)) and

%e exp(x*A(x)) = 1 + x + 3*x^2/2! + 28*x^3/3! + 653*x^4/4! + 28096*x^5/5! + 1833367*x^6/6! + 162874048*x^7/7! + ...

%e Also,

%e A(x) = exp(x*B(x)^3) where B(x) = A(x*B(x)^2) begins

%e B(x) = 1 + x + 11*x^2/2! + 292*x^3/3! + 13149*x^4/4! + 861376*x^5/5! + 75412591*x^6/6! + 8365301568*x^7/7! + ...

%e B(x)^2 = 1 + 2*x + 24*x^2/2! + 650*x^3/3! + 29360*x^4/4! + 1918482*x^5/5! + 167206144*x^6/6! + ...

%e B(x)^3 = 1 + 3*x + 39*x^2/2! + 1080*x^3/3! + 49029*x^4/4! + 3199728*x^5/5! + 277840179*x^6/6! + ...

%e Further,

%e A(x/C(x)^3) = exp(x) where C(x) = A(x/C(x)) begins

%e C(x) = 1 + x + 5*x^2/2! + 85*x^3/3! + 2889*x^4/4! + 154441*x^5/5! + 11527693*x^6/6! + 1120674717*x^7/7! + ...

%e C(x)^3 = 1 + 3*x + 21*x^2/2! + 351*x^3/3! + 11337*x^4/4! + 582843*x^5/5! + 42300765*x^6/6! + ...

%o (PARI) {a(n) = my(A=1+x); for(i=0,n, A = exp( x*((1/x)*serreverse( x/(A^2 + x*O(x^n)) ))^(3/2) )); n!*polcoeff(A,n)}

%o for(n=0,20, print1(a(n),", "))

%Y Cf. A368631, A368632, A144682, A144683, A367385.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jan 02 2024