[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a126151 -id:a126151
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array A(n, k) read by ascending antidiagonals. Polygonal number weighted generalized Catalan sequences.
+10
6
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 15, 8, 1, 1, 1, 5, 34, 105, 16, 1, 1, 1, 6, 61, 496, 945, 32, 1, 1, 1, 7, 96, 1385, 11056, 10395, 64, 1, 1, 1, 8, 139, 2976, 50521, 349504, 135135, 128, 1, 1, 1, 9, 190, 5473, 151416, 2702765, 14873104, 2027025, 256, 1
OFFSET
0,9
COMMENTS
Using polygonal numbers as weights, a recursion for triangles is defined, whose main diagonals represents a family of sequences, which include, among others, the powers of 2, the double factorial of odd numbers, the reduced tangent numbers, and the Euler numbers.
Apart from the edge cases k = 0 and k = n the recursion is T(n, k) = w(n, k) * T(n, k - 1) + T(n - 1, k). T(n, 0) = 1 and T(n, n) = T(n, n-1) if n > 0.
The weights w(n, k) identical to 1 yield the recursion of the Catalan triangle A009766 (with main diagonal the Catalan numbers). Here the polygonal numbers are used as weights in the form w(n, k) = p(s, n - k + 1), where the parameter s is the number of sides of the polygon and p(s, n) = ((s-2) * n^2 - (s-4) * n) / 2, see A317302.
EXAMPLE
Array A(n, k) starts: (polygon|diagonal|triangle)
[0] 1, 1, 1, 1, 1, 1, 1, ... A258837 A000012
[1] 1, 1, 2, 4, 8, 16, 32, ... A080956 A011782
[2] 1, 1, 3, 15, 105, 945, 10395, ... A001477 A001147 A001498
[3] 1, 1, 4, 34, 496, 11056, 349504, ... A000217 A002105 A365674
[4] 1, 1, 5, 61, 1385, 50521, 2702765, ... A000290 A000364 A060058
[5] 1, 1, 6, 96, 2976, 151416, 11449296, ... A000326 A126151 A366138
[6] 1, 1, 7, 139, 5473, 357721, 34988647, ... A000384 A126156 A365672
[7] 1, 1, 8, 190, 9080, 725320, 87067520, ... A000566 A366150 A366149
[8] 1, 1, 9, 249, 14001, 1322001, 188106489, ... A000567
MAPLE
poly := (s, n) -> ((s - 2) * n^2 - (s - 4) * n) / 2:
T := proc(s, n, k) option remember; if k = 0 then 1 else if k = n then T(s, n, k-1) else poly(s, n - k + 1) * T(s, n, k - 1) + T(s, n - 1, k) fi fi end:
for n from 0 to 8 do A := (n, k) -> T(n, k, k): seq(A(n, k), k = 0..9) od;
# Alternative, using continued fractions:
A := proc(p, L) local CF, poly, k, m, P, ser;
poly := (s, n) -> ((s - 2)*n^2 - (s - 4)*n)/2;
CF := 1 + x;
for k from 1 to L do
m := L - k + 1;
P := poly(p, m);
CF := 1/(1 - P*x*CF)
od;
ser := series(CF, x, L);
seq(coeff(ser, x, m), m = 0..L-1)
end:
for p from 0 to 8 do lprint(A(p, 8)) od;
MATHEMATICA
poly[s_, n_] := ((s - 2) * n^2 - (s - 4) * n) / 2;
T[s_, n_, k_] := T[s, n, k] = If[k == 0, 1, If[k == n, T[s, n, k - 1], poly[s, n - k + 1] * T[s, n, k - 1] + T[s, n - 1, k]]];
A[n_, k_] := T[n, k, k];
Table[A[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 27 2023, from first Maple program *)
PROG
(Python)
from functools import cache
@cache
def T(s, n, k):
if k == 0: return 1
if k == n: return T(s, n, k - 1)
p = (n - k + 1) * ((s - 2) * (n - k + 1) - (s - 4)) // 2
return p * T(s, n, k - 1) + T(s, n - 1, k)
def A(n, k): return T(n, k, k)
for n in range(9): print([A(n, k) for k in range(9)])
(PARI)
A(p, n) = {
my(CF = 1 + x,
poly(s, n) = ((s - 2)*n^2 - (s - 4)*n)/2,
m, P
);
for(k = 1, n,
m = n - k + 1;
P = poly(p, m);
CF = 1/(1 - P*x*CF)
);
Vec(CF + O(x^(n)))
}
for(p = 0, 8, print(A(p, 8)))
\\ Michel Marcus and Peter Luschny, Oct 02 2023
CROSSREFS
Cf. A009766, A366137 (central diagonal), A317302 (table of polygonal numbers).
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 30 2023
STATUS
approved
Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301.
+10
5
1, 1, 4, 1, 6, 24, 36, 24, 6, 96, 384, 636, 744, 636, 384, 96, 2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976, 151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416, 11449296, 45797184
OFFSET
0,3
FORMULA
Sum_{k=0,2n} (-1)^k*C(2n,k)*T(n,k) = (-6)^n.
EXAMPLE
Triangle begins:
1;
1, 4, 1;
6, 24, 36, 24, 6;
96, 384, 636, 744, 636, 384, 96;
2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976;
151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416; ...
If we write the triangle like this:
.......................... ....1;
................... ....1, ....4, ....1;
............ ....6, ...24, ...36, ...24, ....6;
..... ...96, ..384, ..636, ..744, ..636, ..384, ...96;
.2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, .2976;
then the first term in each row is the sum of the previous row:
2976 = 96 + 384 + 636 + 744 + 636 + 384 + 96
the next term is 4 times the first:
11904 = 4*2976,
and the remaining terms in each row are obtained by the rule
illustrated by:
20256 = 2*11904 - 2976 - 6*96;
26304 = 2*20256 - 11904 - 6*384;
28536 = 2*26304 - 20256 - 6*636;
26304 = 2*28536 - 26304 - 6*744;
20256 = 2*26304 - 28536 - 6*636;
11904 = 2*20256 - 26304 - 6*384;
2976 = 2*11904 - 20256 - 6*96.
An alternate recurrence is illustrated by:
11904 = 2976 + 3*(96 + 384 + 636 + 744 + 636 + 384 + 96);
20256 = 11904 + 3*(384 + 636 + 744 + 636 + 384);
26304 = 20256 + 3*(636 + 744 + 636);
28536 = 26304 + 3*(744);
and then for k>n, T(n,k) = T(n,2n-k).
PROG
(PARI) T(n, k)=local(p=3); if(2*n<k || k<0, 0, if(n==0 && k==0, 1, if(k==0, sum(j=0, 2*n-2, T(n-1, j)), if(k==1, (p+1)*T(n, 0), if(k<=n, 2*T(n, k-1)-T(n, k-2)-2*p*T(n-1, k-2), T(n, 2*n-k))))))
(PARI) /* Alternate Recurrence: */ T(n, k)=local(p=3); if(2*n<k || k<0, 0, if(n==0 && k==0, 1, if(k==0, sum(j=0, 2*n-2, T(n-1, j)), if(k<=n, T(n, k-1)+p*sum(j=k-1, 2*n-1-k, T(n-1, j)), T(n, 2*n-k)))))
CROSSREFS
Cf. A126151 (column 0); diagonals: A126152, A126153; A126154; variants: A008301, A125053, A126155.
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 19 2006
STATUS
approved
Main diagonal of symmetric triangle A126150: a(n) = A126150(n,n).
+10
5
1, 4, 36, 744, 28536, 1736064, 152914176, 18372559104, 2885671339776, 573765893121024, 140835811776316416, 41820352964911908864, 14774712204104658671616, 6124078747943873540112384
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k, 0<=k<=n} A130847(n,k)*3^k. - Philippe Deléham, Jul 22 2007
G.f.: 1/(1 - 4*x/(1-5*x/(1 - 21*x/(1-22*x/(1 - 50*x/(1-51*x/(1 - 91*x/(1-92*x/(1 -...)))))))))))), a continued fraction involving even-indexed pentagonal numbers A000326. - Paul D. Hanna, Feb 15 2012
a(n) ~ Gamma(1/3) * 2^(3*n+7/3) * 3^(n+3/2) * n^(2*n+7/6) / (exp(2*n) * Pi^(2*n+13/6)). - Vaclav Kotesovec, May 30 2015
PROG
(PARI) /* Continued fraction involving even-indexed pentagonal numbers: */
{a(n)=local(CF=1+x*O(x), m, P); for(k=1, n, m=2*((n-k)\2+1); P=m*(3*m-1)/2-((n-k+1)%2); CF=1/(1-P*x*CF)); polcoeff(CF, n, x)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A126150; A126151 (column 0), A126153 (diagonal).
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2006
STATUS
approved
Secondary diagonal of symmetric triangle A126150: a(n) = A126150(n+1,n).
+10
3
1, 24, 636, 26304, 1650456, 147705984, 17913816576, 2830553662464, 565108879101696, 139114514096953344, 41397845529582959616, 14649251145209922945024, 6079754611331559564097536
OFFSET
0,2
FORMULA
a(n) = A126152(n+1) - 3*A126152(n), where A126152 is the main diagonal of triangle A126150.
CROSSREFS
Cf. A126150; A126151 (column 0), A126152 (diagonal).
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2006
STATUS
approved
Triangle T(n,k) read by rows given by [0, 1, 3, 6, 10, 15, 21, ...] DELTA [1, 3, 6, 10, 15, 21, 28,...] where DELTA is the operator defined in A084938.
+10
2
1, 0, 1, 0, 1, 4, 0, 4, 23, 34, 0, 34, 249, 606, 496, 0, 496, 4354, 14181, 20434, 11056, 0, 11056, 112238, 450097, 894838, 885032, 349504, 0, 349504, 4008024, 18911670, 47136095, 65613780, 48468804, 14873104
OFFSET
0,6
FORMULA
Sum_{k, 0<=k<=n}T(n,k)*x^(n-k)=A000012(n), A011782(n), A001147(n), A002105(n+1), A000364(n), A126151(n), A126156(n) for n = -3,-2,-1,0,1,2,3 respectively .
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 4;
0, 4, 23, 34;
0, 34, 249, 606, 496;
0, 496, 4354, 14181, 20434, 11056;
0, 11056, 112238, 450097, 894838, 885032, 349504;
0, 349504, 4008024, 18911670, 47136095, 65613780, 48468804, 14873104 ;...
CROSSREFS
Diagonals give A002105: [1, 1, 4, 34, 496, ...] Row sums give A000364 : [1, 1, 5, 61, 1385, ...] Euler numbers.
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Sep 30 2003, Jul 17 2007
EXTENSIONS
Corrected and edited. - Philippe Deléham, Nov 24 2008
STATUS
approved
Triangle read by rows. T(n, k) = A000326(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n. T(n, 0) = 1 and T(n, n) = T(n, n - 1) if n > 0.
+10
1
1, 1, 1, 1, 6, 6, 1, 18, 96, 96, 1, 40, 576, 2976, 2976, 1, 75, 2226, 29688, 151416, 151416, 1, 126, 6636, 175680, 2259576, 11449296, 11449296, 1, 196, 16632, 757800, 18931176, 238623408, 1204566336, 1204566336
OFFSET
0,5
COMMENTS
This a weighted generalized Catalan triangle (A365673) with the pentagonal numbers as weights.
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 6, 6;
[3] 1, 18, 96, 96;
[4] 1, 40, 576, 2976, 2976;
[5] 1, 75, 2226, 29688, 151416, 151416;
[6] 1, 126, 6636, 175680, 2259576, 11449296, 11449296;
[7] 1, 196, 16632, 757800, 18931176, 238623408, 1204566336, 1204566336;
MAPLE
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (((n - k + 1)*(3*n - 3*k + 2))/2) * T(n, k - 1) + T(n - 1, k) fi fi end:
seq(seq(T(n, k), k = 0..n), n = 0..8);
CROSSREFS
Cf. A000326, A126151 (main diagonal), A365673.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 01 2023
STATUS
approved

Search completed in 0.052 seconds