[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301.
5

%I #9 Jun 14 2017 00:22:15

%S 1,1,4,1,6,24,36,24,6,96,384,636,744,636,384,96,2976,11904,20256,

%T 26304,28536,26304,20256,11904,2976,151416,605664,1042056,1407024,

%U 1650456,1736064,1650456,1407024,1042056,605664,151416,11449296,45797184

%N Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301.

%F Sum_{k=0,2n} (-1)^k*C(2n,k)*T(n,k) = (-6)^n.

%e Triangle begins:

%e 1;

%e 1, 4, 1;

%e 6, 24, 36, 24, 6;

%e 96, 384, 636, 744, 636, 384, 96;

%e 2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976;

%e 151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416; ...

%e If we write the triangle like this:

%e .......................... ....1;

%e ................... ....1, ....4, ....1;

%e ............ ....6, ...24, ...36, ...24, ....6;

%e ..... ...96, ..384, ..636, ..744, ..636, ..384, ...96;

%e .2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, .2976;

%e then the first term in each row is the sum of the previous row:

%e 2976 = 96 + 384 + 636 + 744 + 636 + 384 + 96

%e the next term is 4 times the first:

%e 11904 = 4*2976,

%e and the remaining terms in each row are obtained by the rule

%e illustrated by:

%e 20256 = 2*11904 - 2976 - 6*96;

%e 26304 = 2*20256 - 11904 - 6*384;

%e 28536 = 2*26304 - 20256 - 6*636;

%e 26304 = 2*28536 - 26304 - 6*744;

%e 20256 = 2*26304 - 28536 - 6*636;

%e 11904 = 2*20256 - 26304 - 6*384;

%e 2976 = 2*11904 - 20256 - 6*96.

%e An alternate recurrence is illustrated by:

%e 11904 = 2976 + 3*(96 + 384 + 636 + 744 + 636 + 384 + 96);

%e 20256 = 11904 + 3*(384 + 636 + 744 + 636 + 384);

%e 26304 = 20256 + 3*(636 + 744 + 636);

%e 28536 = 26304 + 3*(744);

%e and then for k>n, T(n,k) = T(n,2n-k).

%o (PARI) T(n,k)=local(p=3);if(2*n<k || k<0,0,if(n==0 && k==0,1,if(k==0,sum(j=0,2*n-2,T(n-1,j)), if(k==1,(p+1)*T(n,0),if(k<=n,2*T(n,k-1)-T(n,k-2)-2*p*T(n-1,k-2),T(n,2*n-k))))))

%o (PARI) /* Alternate Recurrence: */ T(n,k)=local(p=3);if(2*n<k || k<0,0,if(n==0 && k==0,1,if(k==0,sum(j=0,2*n-2,T(n-1,j)), if(k<=n,T(n,k-1)+p*sum(j=k-1,2*n-1-k,T(n-1,j)),T(n,2*n-k)))))

%Y Cf. A126151 (column 0); diagonals: A126152, A126153; A126154; variants: A008301, A125053, A126155.

%K nonn,tabl

%O 0,3

%A _Paul D. Hanna_, Dec 19 2006