[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126151
E.g.f.: ( (1 + cos(sqrt(6)*x))/2 )^(-1/3), showing coefficients of only the even powers of x.
7
1, 1, 6, 96, 2976, 151416, 11449296, 1204566336, 168233625216, 30110372009856, 6719377991060736, 1829013279998846976, 596449130341224185856, 229556544889929225117696, 102956750031135241952280576, 53228316147100497514507862016, 31423560379886826670772937424896
OFFSET
0,3
COMMENTS
Previous name was: Column 0 and row sums of symmetric triangle A126150.
LINKS
E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411 [math.RA], 2013.
FORMULA
a(n) = Sum_{0<=k<=n} A087736(n,k)*2^(n-k). - Philippe Deléham, Jul 17 2007
G.f.: 1/(1-x/(1-5*x/(1-12*x/(1-22*x/(1-35*x/(1-51*x/(1-70*x/(1-...- (n*(3*n-1)/2)*x/(1-...))))))))), a continued fraction involving pentagonal numbers A000326. - Paul D. Hanna, Feb 15 2012
E.g.f. satisfies: A(x) = exp( Integral Integral A(x)^3 dx dx ), where A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! and the constant of integration is zero. - Paul D. Hanna, May 29 2015
E.g.f. satisfies: A(x) = exp( Integral A(x)^(3/2) * Integral 1/A(x)^(3/2) dx dx ), where A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! and the constant of integration is zero. - Paul D. Hanna, Jun 02 2015
a(n) ~ Gamma(1/3) * 2^(3*n+4/3) * 3^(n+1/2) * n^(2*n+1/6) / (exp(2*n) * Pi^(2*n+7/6)). - Vaclav Kotesovec, May 30 2015
The computation can be based on the pentagonal numbers, a(n) = T(n, n) where T(n, k) = A000326(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n, and T(n, 0) = 1, T(n, n) = T(n, n-1) if n > 0. This is equivalent to Paul D. Hanna's continued fraction 2012. - Peter Luschny, Sep 30 2023
EXAMPLE
E.g.f.: A(x) = 1 + x^2/2! + 6*x^4/4! + 96*x^6/6! + 2976*x^8/8! + 151416*x^10/10! +...
where the logarithm begins:
log(A(x)) = x^2/2! + 3*x^4/4! + 36*x^6/6! + 918*x^8/8! + 40176*x^10/10! + 2686608*x^12/12! +...
compare the logarithm to
A(x)^3 = 1 + 3*x^2/! + 36*x^4/4! + 918*x^6/6! + 40176*x^8/8! + 2686608*x^10/10! +...
where A(x)^3 = 2/(1 + cos(sqrt(6)*x)).
MAPLE
A000326 := n -> n * (3 * n - 1) / 2;
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else A000326(n - k + 1) * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..16); # Peter Luschny, Sep 30 2023
MATHEMATICA
terms = 18;
CoefficientList[((1 + Cos[Sqrt[6] x])/2)^(-3^(-1)) + O[x]^(2 terms), x] Range[0, 2 terms - 2]! // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 26 2018 *)
PROG
(PARI) /* Continued Fraction involving pentagonal numbers A000326: */
{a(n)=local(CF=1+x*O(x), m, P); for(k=1, n, m=n-k+1; P=m*(3*m-1)/2; CF=1/(1-P*x*CF)); polcoeff(CF, n, x)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* E.g.f. A(x) = exp( Integral^2 A(x)^3 dx^2 ): */
{a(n)=local(A=1+x*O(x)); for(i=1, n, A=exp(intformal(intformal(A^3 + x*O(x^(2*n))))) ); (2*n)!*polcoeff(A, 2*n, x)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* E.g.f. A(x) = exp( Integral A(x)^(3/2) * Integral 1/A(x)^(3/2) dx dx ) */
{a(n) = local(A=1+x); for(i=1, n, A = exp( intformal( A^(3/2) * intformal( 1/A^(3/2) + x*O(x^n)) ) ) ); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(2*n), ", "))
CROSSREFS
Cf. A126150; diagonals: A126152, A126153.
Cf. A000326.
Sequence in context: A304646 A251576 A374437 * A066319 A186269 A111826
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2006
EXTENSIONS
New name from Paul D. Hanna, May 30 2015
STATUS
approved