[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125256
Smallest odd prime divisor of n^2 + 1.
7
5, 5, 17, 13, 37, 5, 5, 41, 101, 61, 5, 5, 197, 113, 257, 5, 5, 181, 401, 13, 5, 5, 577, 313, 677, 5, 5, 421, 17, 13, 5, 5, 13, 613, 1297, 5, 5, 761, 1601, 29, 5, 5, 13, 1013, 29, 5, 5, 1201, 41, 1301, 5, 5, 2917, 17, 3137, 5, 5, 1741, 13, 1861, 5, 5, 17, 2113, 4357, 5, 5
OFFSET
2,1
COMMENTS
Any odd prime divisor of n^2+1 is congruent to 1 modulo 4.
n^2+1 is never a power of 2 for n > 1; hence a prime divisor congruent to 1 modulo 4 always exists.
a(n) = 5 if and only if n is congruent to 2 or -2 modulo 5.
If the map "x -> smallest odd prime divisor of n^2+1" is iterated, does it always terminate in the 2-cycle (5 <-> 13)? - Zoran Sunic, Oct 25 2017
REFERENCES
D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.
LINKS
Ray Chandler, Table of n, a(n) for n = 2..20001 (first 999 terms from Nick Hobson)
EXAMPLE
The prime divisors of 8^2 + 1 = 65 are 5 and 13, so a(7) = 5.
MAPLE
with(numtheory, factorset);
A125256 := proc(n) local t1, t2;
if n <= 1 then return(-1); fi;
if (n mod 5) = 2 or (n mod 5) = 3 then return(5); fi;
t1 := numtheory[factorset](n^2+1);
t2:=sort(convert(t1, list));
if (n mod 2) = 1 then return(t2[2]); fi;
t2[1];
end;
[seq(A125256(n), n=1..40)]; # N. J. A. Sloane, Nov 04 2017
PROG
(PARI) vector(68, n, if(n<2, "-", factor(n^2+1)[1+(n%2), 1]))
(PARI) A125256(n)=factor(n^2+1)[1+bittest(n, 0), 1] \\ M. F. Hasler, Nov 06 2017
CROSSREFS
For bisections see A256970, A293958.
Sequence in context: A273855 A175614 A214022 * A228564 A075684 A146876
KEYWORD
easy,nonn
AUTHOR
Nick Hobson, Nov 26 2006
STATUS
approved