[go: up one dir, main page]

login
Search: a083425 -id:a083425
     Sort: relevance | references | number | modified | created      Format: long | short | data
Linear 2nd order recurrence: a(n) = 4*a(n-1) + 5*a(n-2).
+10
33
0, 1, 4, 21, 104, 521, 2604, 13021, 65104, 325521, 1627604, 8138021, 40690104, 203450521, 1017252604, 5086263021, 25431315104, 127156575521, 635782877604, 3178914388021, 15894571940104, 79472859700521
OFFSET
0,3
COMMENTS
Number of walks of length n between any two distinct vertices of the complete graph K_6. Example: a(2)=4 because the walks of length 2 between the vertices A and B of the complete graph ABCDEF are: ACB, ADB, AEB and AFB. - Emeric Deutsch, Apr 01 2004
General form: k=5^n-k. Also: A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499. - Vladimir Joseph Stephan Orlovsky, Dec 11 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-4, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=charpoly(A,1). - Milan Janjic, Jan 27 2010
Pisano period lengths: 1, 2, 6, 2, 2, 6, 6, 4, 18, 2, 10, 6, 4, 6, 6, 8, 16, 18, 18, 2,... - R. J. Mathar, Aug 10 2012
The ratio a(n+1)/a(n) converges to 5 as n approaches infinity. - Felix P. Muga II, Mar 09 2014
For odd n, a(n) is congruent to 1 (mod 10). For even n > 0, a(n) is congruent to 4 (mod 10). - Iain Fox, Dec 30 2017
LINKS
Iain Fox, Table of n, a(n) for n = 0..1431 (terms 0..1000 from Vincenzo Librandi)
Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019.
FORMULA
From Paul Barry, Apr 20 2003: (Start)
a(n) = (5^n -(-1)^n)/6.
G.f.: x/((1-5*x)*(1+x)).
E.g.f.(exp(5*x)-exp(-x))/6. (End) (corrected by M. F. Hasler, Jan 29 2012)
a(n) = Sum_{k=1..n} binomial(n, k)*(-1)^(n+k)*6^(k-1). - Paul Barry, May 13 2003
a(n) = 5^(n-1) - a(n-1). - Emeric Deutsch, Apr 01 2004
a(n) = ((2+sqrt(9))^n - (2-sqrt(9))^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
a(n) = round(5^n/6). - Mircea Merca, Dec 28 2010
The logarithmic generating function 1/6*log((1+x)/(1-5*x)) = x + 4*x^2/2 + 21*x^3/3 + 104*x^4/4 + ... has compositional inverse 6/(5+exp(-6*x)) - 1, the e.g.f. for a signed version of A213128. - Peter Bala, Jun 24 2012
a(n) = (-1)^(n-1)*Sum_{k=0..(n-1)} A135278(n-1,k)*(-6)^k) = (5^n - (-1)^n)/6 = (-1)^(n-1)*Sum_{k=0..(n-1)} (-5)^k). Equals (-1)^(n-1)*Phi(n,-5) when n is an odd prime, where Phi is the cyclotomic polynomial. - Tom Copeland, Apr 14 2014
MAPLE
seq(round(5^n/6), n=0..25); # Mircea Merca, Dec 28 2010
MATHEMATICA
LinearRecurrence[{4, 5}, {0, 1}, 30] (* Harvey P. Dale, Jul 09 2017 *)
PROG
(Sage) [lucas_number1(n, 4, -5) for n in range(0, 22)] # Zerinvary Lajos, Apr 23 2009
(Magma) [Round(5^n/6): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
(PARI) a(n)=5^n\/6 ; \\ Charles R Greathouse IV, Apr 14 2014
(PARI) first(n) = Vec(x/((1 - 5*x)*(1 + x)) + O(x^n), -n) \\ Iain Fox, Dec 30 2017
CROSSREFS
A083425 shifted right.
Cf. A033115 (partial sums), A213128.
KEYWORD
nonn,easy
STATUS
approved
Expansion of (1-x)/(1-6*x).
+10
13
1, 5, 30, 180, 1080, 6480, 38880, 233280, 1399680, 8398080, 50388480, 302330880, 1813985280, 10883911680, 65303470080, 391820820480, 2350924922880, 14105549537280, 84633297223680, 507799783342080
OFFSET
0,2
COMMENTS
With formula a(n) = (5*6^n + 0^n)/6, this is the binomial transform of A083425. - Paul Barry, Apr 30 2003
For n>=1, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4,5,6} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n) = (n+1) terms in the sequence (1, 4, 5, 5, 5, ...) dot (n+1) terms in the sequence (1, 1, 5, 30, 180, 1080, ...). Example: a(4) = (1, 4, 5, 5, 5) dot (1, 1, 5, 30, 180) = (1 + 4 + 25 + 150 + 900), where (1, 4, 25, 150, ...) = first differences of current sequence. - Gary W. Adamson, Aug 03 2010
a(n) is the number of compositions of n when there are 5 types of each natural number. - Milan Janjic, Aug 13 2010
FORMULA
a(n) = 6*a(n-1), n>=2.
a(n) = 5*6^(n-1), n>=1. - Vincenzo Librandi, Sep 15 2011
G.f.: (1-x)/(1-6*x).
G.f.: 1/(1 - 5*Sum_{k>=1} x^k).
E.g.f.: (1/6)*(1 + 5*exp(6*x)). - Stefano Spezia, Oct 18 2019
MAPLE
spec := [S, {S=Sequence(Prod(Sequence(Z), Union(Z, Z, Z, Z, Z)))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
seq(`if`(n=0, 1, 5*6^(n-1)), n=0..30); # G. C. Greubel, Oct 18 2019
MATHEMATICA
Join[{1}, NestList[6#&, 5, 20]] (* Harvey P. Dale, Nov 30 2015 *)
PROG
(PARI) vector(31, n, if(n==1, 1, 5*6^(n-2))) \\ G. C. Greubel, Oct 18 2019
(Magma) [1] cat [5*6^(n-1): n in [1..30]]; // G. C. Greubel, Oct 18 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 22); Coefficients(R!( (1-x)/(1-6*x))); // Marius A. Burtea, Oct 18 2019
(Sage) [1]+[5*6^(n-1) for n in (1..30)] # G. C. Greubel, Oct 18 2019
(GAP) Concatenation([1], List([1..30], n-> 5*6^(n-1) )); # G. C. Greubel, Oct 18 2019
CROSSREFS
Cf. A083425.
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved
Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
+10
6
1, 5, 26, 130, 651, 3255, 16276, 81380, 406901, 2034505, 10172526, 50862630, 254313151, 1271565755, 6357828776, 31789143880, 158945719401, 794728597005, 3973642985026, 19868214925130, 99341074625651, 496705373128255
OFFSET
1,2
COMMENTS
Partial sums of A015531. - Mircea Merca, Dec 28 2010
FORMULA
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3). - Joerg Arndt, Jan 08 2011
From Paul Barry, Nov 12 2003: (Start)
a(n) = floor(5^(n+2)/24);
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k);
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*5^j.
Partial sums of A083425.
G.f.: 1/((1-x)*(1+x)*(1-5*x));
a(n) = 4*a(n-1) + 5*a(n-2) + 1. (End)
From Mircea Merca, Dec 28 2010: (Start)
a(n) = (1/3)*floor(5^(n+1)/8) = floor((5*5^n - 1)/24) = round((5*5^n - 3)/24) = round((5*5^n - 5)/24) = ceiling((5*5^n - 5)/24);
a(n) = a(n-2) + 5^(n-1), n > 1. (End)
MAPLE
seq(1/3*floor(5^(n+1)/8), n=1..32); # Mircea Merca, Dec 26 2010
MATHEMATICA
Table[FromDigits[PadRight[{}, n, {1, 0}], 5], {n, 30}] (* or *) LinearRecurrence[ {5, 1, -5}, {1, 5, 26}, 30] (* Harvey P. Dale, Jan 28 2017 *)
PROG
(Magma) [Round((5*5^n-3)/24): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
CROSSREFS
Cf. A015531.
KEYWORD
nonn,base,easy
STATUS
approved

Search completed in 0.005 seconds