# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a015531 Showing 1-1 of 1 %I A015531 #83 Aug 04 2024 19:10:04 %S A015531 0,1,4,21,104,521,2604,13021,65104,325521,1627604,8138021,40690104, %T A015531 203450521,1017252604,5086263021,25431315104,127156575521, %U A015531 635782877604,3178914388021,15894571940104,79472859700521 %N A015531 Linear 2nd order recurrence: a(n) = 4*a(n-1) + 5*a(n-2). %C A015531 Number of walks of length n between any two distinct vertices of the complete graph K_6. Example: a(2)=4 because the walks of length 2 between the vertices A and B of the complete graph ABCDEF are: ACB, ADB, AEB and AFB. - _Emeric Deutsch_, Apr 01 2004 %C A015531 General form: k=5^n-k. Also: A001045, A078008, A097073, A115341, A015518, A054878, A015521, A109499. - _Vladimir Joseph Stephan Orlovsky_, Dec 11 2008 %C A015531 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-4, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=charpoly(A,1). - _Milan Janjic_, Jan 27 2010 %C A015531 Pisano period lengths: 1, 2, 6, 2, 2, 6, 6, 4, 18, 2, 10, 6, 4, 6, 6, 8, 16, 18, 18, 2,... - _R. J. Mathar_, Aug 10 2012 %C A015531 The ratio a(n+1)/a(n) converges to 5 as n approaches infinity. - _Felix P. Muga II_, Mar 09 2014 %C A015531 For odd n, a(n) is congruent to 1 (mod 10). For even n > 0, a(n) is congruent to 4 (mod 10). - _Iain Fox_, Dec 30 2017 %H A015531 Iain Fox, Table of n, a(n) for n = 0..1431 (terms 0..1000 from Vincenzo Librandi) %H A015531 Jean-Paul Allouche, Jeffrey Shallit, Zhixiong Wen, Wen Wu, Jiemeng Zhang, Sum-free sets generated by the period-k-folding sequences and some Sturmian sequences, arXiv:1911.01687 [math.CO], 2019. %H A015531 F. P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, March 2014. %H A015531 Index entries for linear recurrences with constant coefficients, signature (4,5). %F A015531 From _Paul Barry_, Apr 20 2003: (Start) %F A015531 a(n) = (5^n -(-1)^n)/6. %F A015531 G.f.: x/((1-5*x)*(1+x)). %F A015531 E.g.f.(exp(5*x)-exp(-x))/6. (End) (corrected by _M. F. Hasler_, Jan 29 2012) %F A015531 a(n) = Sum_{k=1..n} binomial(n, k)*(-1)^(n+k)*6^(k-1). - _Paul Barry_, May 13 2003 %F A015531 a(n) = 5^(n-1) - a(n-1). - _Emeric Deutsch_, Apr 01 2004 %F A015531 a(n) = ((2+sqrt(9))^n - (2-sqrt(9))^n)/6. - Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009 %F A015531 a(n) = round(5^n/6). - _Mircea Merca_, Dec 28 2010 %F A015531 The logarithmic generating function 1/6*log((1+x)/(1-5*x)) = x + 4*x^2/2 + 21*x^3/3 + 104*x^4/4 + ... has compositional inverse 6/(5+exp(-6*x)) - 1, the e.g.f. for a signed version of A213128. - _Peter Bala_, Jun 24 2012 %F A015531 a(n) = (-1)^(n-1)*Sum_{k=0..(n-1)} A135278(n-1,k)*(-6)^k) = (5^n - (-1)^n)/6 = (-1)^(n-1)*Sum_{k=0..(n-1)} (-5)^k). Equals (-1)^(n-1)*Phi(n,-5) when n is an odd prime, where Phi is the cyclotomic polynomial. - _Tom Copeland_, Apr 14 2014 %p A015531 seq(round(5^n/6), n=0..25); # _Mircea Merca_, Dec 28 2010 %t A015531 LinearRecurrence[{4,5},{0,1},30] (* _Harvey P. Dale_, Jul 09 2017 *) %o A015531 (Sage) [lucas_number1(n,4,-5) for n in range(0, 22)] # _Zerinvary Lajos_, Apr 23 2009 %o A015531 (Magma) [Round(5^n/6): n in [0..30]]; // _Vincenzo Librandi_, Jun 24 2011 %o A015531 (PARI) a(n)=5^n\/6 ; \\ _Charles R Greathouse IV_, Apr 14 2014 %o A015531 (PARI) first(n) = Vec(x/((1 - 5*x)*(1 + x)) + O(x^n), -n) \\ _Iain Fox_, Dec 30 2017 %Y A015531 A083425 shifted right. %Y A015531 Cf. A033115 (partial sums), A213128. %K A015531 nonn,easy %O A015531 0,3 %A A015531 _Olivier GĂ©rard_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE