[go: up one dir, main page]

login
Search: a082299 -id:a082299
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = gcd(A001414(n), A003415(n)), where A001414 is the sum of prime factors with repetition, and A003415 is the arithmetic derivative.
+10
13
0, 1, 1, 4, 1, 5, 1, 6, 6, 7, 1, 1, 1, 9, 8, 8, 1, 1, 1, 3, 10, 13, 1, 1, 10, 15, 9, 1, 1, 1, 1, 10, 14, 19, 12, 10, 1, 21, 16, 1, 1, 1, 1, 3, 1, 25, 1, 1, 14, 3, 20, 1, 1, 1, 16, 1, 22, 31, 1, 4, 1, 33, 1, 12, 18, 1, 1, 3, 26, 1, 1, 12, 1, 39, 1, 1, 18, 1, 1, 1, 12, 43, 1, 2, 22, 45, 32, 1, 1, 1, 20, 3, 34, 49, 24
OFFSET
1,4
COMMENTS
For n >= 1, a(n) is a multiple of A373363(n).
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A373364(n) = gcd(A001414(n), A003415(n));
CROSSREFS
Cf. A001414, A003415, A373375 (positions of even terms), A373376 (of odd terms).
Cf. also A082299, A373362, A373363.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2024
STATUS
approved
a(n) = gcd(A001414(n), A276085(n)), where A001414 is the sum of prime factors with repetition, and A276085 is the primorial base log-function.
+10
11
0, 1, 1, 2, 1, 1, 1, 3, 2, 7, 1, 1, 1, 1, 8, 4, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 12, 2, 1, 1, 8, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 4, 17, 1, 1, 8, 1, 2, 1, 1, 2, 1, 1, 1, 6, 6, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 9, 1, 1, 4, 1, 1, 2, 2, 1, 8, 1, 1, 1, 20, 1, 2, 1, 12, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
As A001414 and A276085 are both fully additive sequences, all sequences that give the positions of multiples of some k > 1 in this sequence are closed under multiplication: For example, A373373, which gives the indices of multiples of 3.
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
A373362(n) = gcd(A001414(n), A276085(n));
CROSSREFS
Cf. A345452 (positions of even terms), A373373 (positions of multiples of 3).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2024
STATUS
approved
a(n) = gcd(A001414(n), A083345(n)), where A001414 is the sum of prime factors with repetition, and A083345 is the numerator of the sum of the inverses of prime factors with repetition.
+10
10
0, 1, 1, 1, 1, 5, 1, 3, 2, 7, 1, 1, 1, 9, 8, 2, 1, 1, 1, 3, 10, 13, 1, 1, 2, 15, 1, 1, 1, 1, 1, 5, 14, 19, 12, 5, 1, 21, 16, 1, 1, 1, 1, 3, 1, 25, 1, 1, 2, 3, 20, 1, 1, 1, 16, 1, 22, 31, 1, 1, 1, 33, 1, 3, 18, 1, 1, 3, 26, 1, 1, 1, 1, 39, 1, 1, 18, 1, 1, 1, 4, 43, 1, 1, 22, 45, 32, 1, 1, 1, 20, 3, 34, 49, 24, 1, 1, 1, 1, 7
OFFSET
1,6
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A083345(n) = { my(f=factor(n)); numerator(vecsum(vector(#f~, i, f[i, 2]/f[i, 1]))); };
A373363(n) = gcd(A001414(n), A083345(n));
CROSSREFS
Cf. A345452 (positions of even terms), A353374 (their characteristic function).
Cf. also A082299, A373362.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2024
STATUS
approved
a(n) = gcd(sum of distinct prime factors of n, product of distinct prime factors of n).
+10
7
1, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, 1, 5, 1, 3, 1, 29, 10, 31, 2, 1, 1, 1, 1, 37, 1, 1, 1, 41, 6, 43, 1, 1, 1, 47, 1, 7, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 10, 61, 1, 1, 2, 1, 2, 67, 1, 1, 14, 71, 1, 73, 1, 1, 1, 1, 6, 79, 1, 3, 1, 83, 6, 1, 1, 1, 1, 89, 10, 1, 1, 1
OFFSET
1,2
LINKS
FORMULA
From Antti Karttunen, Feb 01 2021: (Start)
a(n) = gcd(A007947(n), A008472(n)).
a(n) = A007947(n) / A340677(n) = A008472(n) / A340678(n).
(End)
EXAMPLE
n=84: a(84) = gcd(2*3*7, 2+3+7) = gcd(42, 12) = 6.
MATHEMATICA
PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{pf = PrimeFactors[n]}, GCD[Plus @@ pf, Times @@ pf]]; Table[ f[n], {n, 93}] (* Robert G. Wilson v, Nov 04 2004 *)
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
A008472(n) = vecsum(factor(n)[, 1]); \\ From A008472
A099636(n) = gcd(A007947(n), A008472(n));
CROSSREFS
Differs from related A099635 for the first time at n=84, where a(84) = 6, while A099635(84) = 12.
Differs from A014963 for the first time at n=30, where a(30) = 10, while A014963(30) = 1.
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 28 2004
EXTENSIONS
Name clarified by Antti Karttunen, Feb 01 2021
STATUS
approved
a(n) = gcd(A001414(n), A059975(n)), where A001414 and A059975 are fully additive with a(p) = p and a(p) = p-1, respectively.
+10
7
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 2, 1, 2, 1, 1, 4, 1, 1, 1, 6, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3
OFFSET
1,4
LINKS
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]);
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A373369(n) = gcd(A001414(n), A059975(n));
CROSSREFS
Cf. A001414, A059975, A345452 (positions of even terms).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2024
STATUS
approved
3-Suzanne numbers; composite multiples of 3 whose sum of prime factors with multiplicity is a multiple of 3.
+10
6
9, 24, 27, 42, 60, 72, 78, 81, 105, 114, 126, 132, 150, 180, 186, 192, 195, 204, 216, 222, 231, 234, 243, 258, 276, 285, 315, 330, 336, 342, 348, 357, 366, 375, 378, 396, 402, 429, 438, 450, 465, 474, 480, 483, 492, 510, 540, 555, 558, 564, 576, 582, 585
OFFSET
1,1
COMMENTS
Composite numbers k such that the sum of digits of k (A007953) and the sum of sums of digits of the prime factors of k (taken with multiplicity, A118503) are both divisible by 3. - Amiram Eldar, Apr 23 2021
The new secondary definition is equal to the original because taking the decimal digit sum preserves congruence modulo 3. This is a multiplicative semigroup: if m and n are in the sequence, then so is m*n. - Antti Karttunen, Jun 08 2024
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384.
James J. Tattersall, Elementary Number Theory in Nine Chapters, 2nd ed., Cambridge University Press, 2005, p. 93.
LINKS
Michael Smith, Cousins of Smith Numbers: Monica and Suzanne Sets, Fibonacci Quarterly, Vol. 34, No. 2 (1996), pp. 102-104.
Eric Weisstein's World of Mathematics, Suzanne Set.
FORMULA
a(n) = 3*A289142(1+n). - Antti Karttunen, Jun 08 2024
EXAMPLE
From Antti Karttunen, Jun 08 2024: (Start)
42 = 2*3*7 is a term as it is a multiple of 3, and also 2+3+7 = 12 is a multiple of 3.
60 = 2*2*3*5 is a term is it is a multiple of 3, and also 2+2+3+5 = 12 is a multiple of 3.
(End)
MATHEMATICA
s[n_] := Plus @@ IntegerDigits[n]; f[p_, e_] := e*s[p]; sp[n_] := Plus @@ f @@@ FactorInteger[n]; suz3Q[n_] := CompositeQ[n] && And @@ Divisible[{s[n], sp[n]}, 3]; Select[Range[600], suz3Q] (* Amiram Eldar, Apr 23 2021 *)
PROG
(PARI) isA102217(n) = if(n<=3 || (n%3), 0, my(f=factor(n)); 0==(sum(i=1, #f~, f[i, 2]*sumdigits(f[i, 1]))%3)); \\ Antti Karttunen, Jun 08 2024
(PARI) isA102217(n) = (n>3 && !(n%3) && A373371(n)); \\ Antti Karttunen, Jun 08 2024
CROSSREFS
Subsequence of A177927.
Intersection of A008585 and A289142 without the initial 3.
Positions of multiples of 3 in A082299, after A082299(3).
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Dec 30 2004
EXTENSIONS
Alternative definition added and keyword:base removed by Antti Karttunen, Jun 08 2024
STATUS
approved
a(n) = gcd(n, A059975(n)), where A059975 is fully additive with a(p) = p-1.
+10
6
1, 1, 1, 2, 1, 3, 1, 1, 1, 5, 1, 4, 1, 7, 3, 4, 1, 1, 1, 2, 1, 11, 1, 1, 1, 13, 3, 4, 1, 1, 1, 1, 3, 17, 5, 6, 1, 19, 1, 1, 1, 3, 1, 4, 1, 23, 1, 6, 1, 1, 3, 2, 1, 1, 1, 1, 1, 29, 1, 4, 1, 31, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 37, 5, 4, 1, 3, 1, 8, 1, 41, 1, 2, 5, 43, 3, 1, 1, 9, 1, 4, 1, 47, 1, 1, 1, 1, 1, 10
OFFSET
1,4
LINKS
PROG
(PARI)
A059975(n) = {my(f = factor(n)); sum(i = 1, #f~, f[i, 2]*(f[i, 1] - 1)); };
A373368(n) = gcd(n, A059975(n));
CROSSREFS
Cf. A059975, A108269 (positions of even terms), A359794 (of odd terms), A359832 (parity of terms).
Cf. also A082299, A373361, A373369.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 05 2024
STATUS
approved
Numerator of sopfr(n)/n, where sopfr=A001414 is the sum of prime factors (with repetition).
+10
4
0, 1, 1, 1, 1, 5, 1, 3, 2, 7, 1, 7, 1, 9, 8, 1, 1, 4, 1, 9, 10, 13, 1, 3, 2, 15, 1, 11, 1, 1, 1, 5, 14, 19, 12, 5, 1, 21, 16, 11, 1, 2, 1, 15, 11, 25, 1, 11, 2, 6, 20, 17, 1, 11, 16, 13, 22, 31, 1, 1, 1, 33, 13, 3, 18, 8, 1, 21, 26, 1, 1, 1, 1, 39, 13, 23, 18, 3, 1, 13, 4, 43, 1, 1, 22, 45, 32, 17
OFFSET
1,6
COMMENTS
Denominator is A082344(n) = n/A082299(n).
LINKS
FORMULA
a(n) = A001414(n)/A082299(n).
EXAMPLE
n=200: (2+2+2+5+5)/(2*2*2*5*5) = 16/(2*2*2*5*5) = (2*2*2*2)/(2*2*2*5*5) = 2/25, therefore a(200)=2, A082344(200)=25.
MATHEMATICA
sopfr[n_] := If[n == 1, 0, Total[Times @@@ FactorInteger[n]]];
a[n_] := Numerator[sopfr[n]/n];
Array[a, 100] (* Jean-François Alcover, Dec 03 2021 *)
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A082299(n) = gcd(n, A001414(n));
A082343(n) = A001414(n)/A082299(n); \\ Antti Karttunen, Mar 04 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Apr 09 2003
STATUS
approved
Denominator of sopfr(n)/n, where sopfr=A001414 is the sum of prime factors (with repetition).
+10
4
1, 1, 1, 1, 1, 6, 1, 4, 3, 10, 1, 12, 1, 14, 15, 2, 1, 9, 1, 20, 21, 22, 1, 8, 5, 26, 3, 28, 1, 3, 1, 16, 33, 34, 35, 18, 1, 38, 39, 40, 1, 7, 1, 44, 45, 46, 1, 48, 7, 25, 51, 52, 1, 54, 55, 56, 57, 58, 1, 5, 1, 62, 63, 16, 65, 33, 1, 68, 69, 5, 1, 6, 1, 74, 75, 76, 77, 13, 1, 80, 27, 82, 1, 6
OFFSET
1,6
COMMENTS
Numerator is A082343(n) = A001414(n)/A082299(n).
LINKS
FORMULA
a(n) = n/A082299(n).
EXAMPLE
n=200: (2+2+2+5+5)/(2*2*2*5*5) = 16/(2*2*2*5*5) = (2*2*2*2)/(2*2*2*5*5) = 2/25, therefore a(200)=25, A082343(200)=2.
MATHEMATICA
sopd[n_]:=Module[{f=Flatten[Table[#[[1]], #[[2]]]&/@FactorInteger[n]]}, Denominator[ Total[f]/n]]; Array[sopd, 90] (* Harvey P. Dale, Jul 24 2018 *)
sopfr[n_] := If[n == 1, 0, Total[Times @@@ FactorInteger[n]]];
a[n_] := Denominator[sopfr[n]/n];
Array[a, 100] (* Jean-François Alcover, Dec 03 2021 *)
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A082299(n) = gcd(n, A001414(n));
A082344(n) = (n/A082299(n)); \\ Antti Karttunen, Mar 04 2018
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Reinhard Zumkeller, Apr 09 2003
STATUS
approved
a(0)=1; for n > 0, a(n) = the greatest common divisor (GCD) of n and the sum of all previous terms if the GCD is not already in the sequence; otherwise a(n) = a(n-1) + n.
+10
4
1, 2, 4, 7, 11, 5, 6, 13, 21, 30, 10, 21, 33, 46, 14, 29, 45, 62, 18, 37, 57, 78, 22, 45, 69, 94, 26, 53, 81, 110, 140, 171, 203, 236, 270, 305, 341, 378, 416, 39, 79, 120, 162, 205, 249, 294, 340, 387, 3, 52, 102, 17, 69, 122, 176, 231, 287, 344, 402, 461, 521, 582, 644, 707, 771, 836, 902, 969
OFFSET
0,2
COMMENTS
The sequence displays the unusual behavior of decreasing 53 times in the first 1975 terms, due to the existence of a GCD which has not previously appeared in the sequence, but then not decreasing again for n up to at least 100 million. In this period there are 37 repeated terms, the first being 21 at n=11 and the last 161202 at n=2054. In the same range many values do not appear, for example 16,23,28,32,36. It is unknown when the sequence decreases again, or if all values eventually appear. The 100 millionth term is 4999999948050717.
See the companion sequence A333980 for the sum of the terms from a(0) to a(n).
LINKS
Scott R. Shannon, Graph of the terms for n=0..2500. This includes the last known decrease in the sequence, n(1974) = 42.
EXAMPLE
a(2) = 4 as the sum of all previous terms is a(0)+a(1) = 3, and the GCD of 3 and 2 is 1, which has already appeared in the sequence. Therefore a(2) = a(1) + n = 2 + 2 = 4.
a(4) = 11 as the sum of all previous terms is a(0)+...+a(3) = 14, and the GCD of 14 and 4 is 2. However 2 has already appeared so a(4) = a(3) + n = 7 + 4 = 11.
a(5) = 5 as the sum of all previous terms is a(0)+...+a(4) = 25, and the GCD of 25 and 5 is 5, and as 5 has not previous appeared a(5) = 5.
PROG
(PARI) lista(nn) = {my(va = vector(nn), s=0); va[1] = 1; s += va[1]; for (n=2, nn, my(g = gcd(n-1, s)); if (#select(x->(x==g), va), va[n] = va[n-1]+n-1, va[n] = g); s += va[n]; ); va; } \\ Michel Marcus, Sep 05 2020
CROSSREFS
Cf. A333980, A333826 (same rules but starting a(1)=1), A165430, A064814, A082299, A005132, A336957.
KEYWORD
nonn
AUTHOR
Scott R. Shannon, Aug 29 2020
STATUS
approved

Search completed in 0.012 seconds