[go: up one dir, main page]

login
Search: a060888 -id:a060888
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n*(n^8 + 1)*(n^4 + 1)*(n^2 + 1)*(n + 1) + 1.
+10
14
1, 17, 131071, 64570081, 5726623061, 190734863281, 3385331888947, 38771752331201, 321685687669321, 2084647712458321, 11111111111111111, 50544702849929377, 201691918794585181, 720867993281778161, 2345488209948553531, 7037580381120954241
OFFSET
0,2
COMMENTS
a(n) = Phi_17(n) where Phi_k(x) is the k-th cyclotomic polynomial.
LINKS
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
FORMULA
G.f.: (1 +130918*x^2 +62343506*x^3 +4646748160*x^4 +102074708252*x^5 +878064150546*x^6 +3419813860214*x^7 +6502752956958*x^8 +6232856389160*x^9 +3004612851498*x^10 +701875014878*x^11 +73106078368*x^12 +2893069436*x^13 +31542430*x^14 +43674*x^15 +x^16)/(1 - x)^17.
Sum_{n>=0} 1/a(n) = 1.05883117453...
MATHEMATICA
Table[Cyclotomic[17, n], {n, 0, 15}]
PROG
(Magma) [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1: n in [0..20]]; // Vincenzo Librandi, Feb 27 2016
(PARI) a(n)=n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 \\ Charles R Greathouse IV, Jul 26 2016
(Sage) [n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1 for n in (0..20)] # G. C. Greubel, Apr 24 2019
(GAP) List([0..20], n-> n*(n^8+1)*(n^4+1)*(n^2+1)*(n+1)+1) # G. C. Greubel, Apr 24 2019
CROSSREFS
Cf. similar sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), this sequence (k=17), A060891 (k=18), A269446 (k=19).
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Feb 26 2016
STATUS
approved
a(n) = n^3 - n^2 + n - 1 = (n-1) * (n^2 + 1).
+10
13
-1, 0, 5, 20, 51, 104, 185, 300, 455, 656, 909, 1220, 1595, 2040, 2561, 3164, 3855, 4640, 5525, 6516, 7619, 8840, 10185, 11660, 13271, 15024, 16925, 18980, 21195, 23576, 26129, 28860, 31775, 34880, 38181, 41684, 45395, 49320, 53465, 57836, 62439, 67280, 72365, 77700, 83291, 89144, 95265, 101660
OFFSET
0,3
COMMENTS
Number of walks of length 4 between any two distinct vertices of the complete graph K_{n+1} (n >= 1). Example: a(2) = 5 because in the complete graph ABC we have the following walks of length 4 between A and B: ABACB, ABCAB, ACACB, ACBAB and ACBCB. - Emeric Deutsch, Apr 01 2004
1/a(n) for n >= 2, is in base n given by 0.repeat(0,0,1,1), due to (1/n^3 + 1/n^4)*(1/(1-1/n^4)) = 1/((n-1)*(n^2+1)). - Wolfdieter Lang, Jun 20 2014
For n>3, a(n) is 1220 in base n-1. - Bruno Berselli, Jan 26 2016
For odd n, a(n) * (n+1) / 2 + 1 also represents the first integer in a sum of n^4 consecutive integers that equals n^8. - Patrick J. McNab, Dec 26 2016
FORMULA
a(n) = round(n^4/(n+1)) for n >= 2.
a(n) = A062160(n, 4), for n > 2.
G.f.: (4*x-1)*(1+x^2)/(1-x)^4 (for the signed sequence). - Emeric Deutsch, Apr 01 2004
a(n) = floor(n^5/(n^2+n)) for n > 0. - Gary Detlefs, May 27 2010
a(n) = -A053698(-n). - Bruno Berselli, Jan 26 2016
Sum_{n>=2} 1/a(n) = A268086. - Amiram Eldar, Nov 18 2020
E.g.f.: exp(x)*(x^3 + 2*x^2 + x - 1). - Stefano Spezia, Apr 22 2023
EXAMPLE
a(4) = 4^3 - 4^2 + 4 - 1 = 64 - 16 + 4 - 1 = 51.
MAPLE
[seq(n^3-n^2+n-1, n=0..49)]; # Zerinvary Lajos, Jun 29 2006
a:=n->sum(1+sum(n, k=1..n), k=2..n):seq(a(n), n=0...43); # Zerinvary Lajos, Aug 24 2008
MATHEMATICA
Table[n^3 - n^2 + n - 1, {n, 0, 49}] (* Alonso del Arte, Apr 30 2014 *)
PROG
(PARI) { for (n=0, 1000, write("b062158.txt", n, " ", n*(n*(n - 1) + 1) - 1) ) } \\ Harry J. Smith, Aug 02 2009
(Magma) [n^3 - n^2 + n - 1 : n in [0..50]]; // Wesley Ivan Hurt, Dec 26 2016
KEYWORD
sign,easy
AUTHOR
Henry Bottomley, Jun 08 2001
EXTENSIONS
More terms from Emeric Deutsch, Apr 01 2004
STATUS
approved
Square array T(n,k) = (n^k - (-1)^k)/(n+1), n >= 0, k >= 0, read by falling antidiagonals.
+10
8
0, 1, 0, -1, 1, 0, 1, 0, 1, 0, -1, 1, 1, 1, 0, 1, 0, 3, 2, 1, 0, -1, 1, 5, 7, 3, 1, 0, 1, 0, 11, 20, 13, 4, 1, 0, -1, 1, 21, 61, 51, 21, 5, 1, 0, 1, 0, 43, 182, 205, 104, 31, 6, 1, 0, -1, 1, 85, 547, 819, 521, 185, 43, 7, 1, 0, 1, 0, 171, 1640, 3277, 2604, 1111, 300, 57, 8, 1, 0, -1, 1, 341, 4921, 13107, 13021, 6665, 2101, 455, 73, 9, 1, 0
OFFSET
0,18
COMMENTS
For n >= 1, T(n, k) equals the number of walks of length k between any two distinct vertices of the complete graph K_(n+1). - Peter Bala, May 30 2024
LINKS
M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
FORMULA
T(n, k) = n^(k-1) - n^(k-2) + n^(k-3) - ... + (-1)^(k-1) = n^(k-1) - T(n, k-1) = n*T(n, k-1) - (-1)^k = (n - 1)*T(n, k-1) + n*T(n, k-2) = round[n^k/(n+1)] for n > 1.
T(n, k) = (-1)^(k+1) * resultant( n*x + 1, (x^k-1)/(x-1) ). - Max Alekseyev, Sep 28 2021
G.f. of row n: x/((1+x) * (1-n*x)). - Seiichi Manyama, Apr 12 2019
E.g.f. of row n: (exp(n*x) - exp(-x))/(n+1). - Stefano Spezia, Feb 20 2024
From Peter Bala, May 31 2024: (Start)
Binomial transform of the m-th row: Sum_{k = 0..n} binomial(n, k)*T(m, k) = (m + 1)^(n-1) for n >= 1.
Let R(m, x) denote the g.f. of the m-th row of the square array. Then R(m_1, x) o R(m_2, x) = R(m_1 + m_2 + m_1*m_2, x), where o denotes the black diamond product of power series as defined by Dukes and White. Cf. A109502.
T(m_1 + m_2 + m_1*m_2, k) = Sum_{i = 0..k} Sum_{j = i..k} binomial(k, i)* binomial(k-i, j-i)*T(m_1, j)*T(m_2, k-i). (End)
EXAMPLE
From Seiichi Manyama, Apr 12 2019: (Start)
Square array begins:
0, 1, -1, 1, -1, 1, -1, 1, ...
0, 1, 0, 1, 0, 1, 0, 1, ...
0, 1, 1, 3, 5, 11, 21, 43, ...
0, 1, 2, 7, 20, 61, 182, 547, ...
0, 1, 3, 13, 51, 205, 819, 3277, ...
0, 1, 4, 21, 104, 521, 2604, 13021, ...
0, 1, 5, 31, 185, 1111, 6665, 39991, ...
0, 1, 6, 43, 300, 2101, 14706, 102943, ... (End)
MAPLE
seq(print(seq((n^k - (-1)^k)/(n+1), k = 0..10)), n = 0..10); # Peter Bala, May 31 2024
MATHEMATICA
T[n_, k_]:=(n^k - (-1)^k)/(n+1); Join[{0}, Table[Reverse[Table[T[n-k, k], {k, 0, n}]], {n, 12}]]//Flatten (* Stefano Spezia, Feb 20 2024 *)
CROSSREFS
Related to repunits in negative bases (cf. A055129 for positive bases).
Main diagonal gives A081216.
Cf. A109502.
KEYWORD
sign,tabl
AUTHOR
Henry Bottomley, Jun 08 2001
STATUS
approved
a(n) = n^5 - n^4 + n^3 - n^2 + n - 1.
+10
4
-1, 0, 21, 182, 819, 2604, 6665, 14706, 29127, 53144, 90909, 147630, 229691, 344772, 501969, 711914, 986895, 1340976, 1790117, 2352294, 3047619, 3898460, 4929561, 6168162, 7644119, 9390024, 11441325, 13836446, 16616907, 19827444, 23516129, 27734490, 32537631, 37984352, 44137269
OFFSET
0,3
COMMENTS
Number of walks of length 6 between any two distinct nodes of the complete graph K_{n+1} (n>=1). - Emeric Deutsch, Apr 01 2004
For odd n, a(n) * (n+1) / 2 + 1 also represents the first integer in a sum of n^6 consecutive integers that equals n^12. - Patrick J. McNab, Dec 26 2016
FORMULA
a(n) = round(n^6/(n+1)) for n>2 = A062160(n,6).
G.f.: (76x^3 + 6x^2 + 27x^4 + 6x^5 + 6x - 1)/(1-x)^6 (for the signed sequence). - Emeric Deutsch, Apr 01 2004
a(n) = (n^6 - 1)/(n+1). a(n) = (n-1)(n^2 - n + 1)(n^2 + n + 1) = (n-1)*A002061(n)*A002061(n+1). - Alexander Adamchuk, Apr 12 2006
a(0)=-1, a(1)=0, a(2)=21, a(3)=182, a(4)=819, a(5)=2604, a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Harvey P. Dale, Dec 20 2015
E.g.f.: exp(x)*(x^5 + 9*x^4 + 20*x^3 + 10*x^2 + x - 1). - Stefano Spezia, Apr 22 2023
EXAMPLE
a(4) = 4^5 - 4^4 + 4^3 - 4^2 + 4 - 1 = 1024 - 256 + 64 - 16 + 4 - 1 = 819.
MAPLE
A062159:=n->n^5-n^4+n^3-n^2+n-1; seq(A062159(k), k=0..100); # Wesley Ivan Hurt, Nov 06 2013
MATHEMATICA
Table[n^5-n^4+n^3-n^2+n-1, {n, 0, 100}] (* Wesley Ivan Hurt, Nov 06 2013 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {-1, 0, 21, 182, 819, 2604}, 40] (* Harvey P. Dale, Dec 20 2015 *)
PROG
(PARI) { for (n=0, 1000, write("b062159.txt", n, " ", n*(n*(n*(n*(n - 1) + 1) - 1) + 1) - 1) ) } \\ Harry J. Smith, Aug 02 2009
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Henry Bottomley, Jun 08 2001
EXTENSIONS
More terms from Emeric Deutsch, Apr 01 2004
STATUS
approved
Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.
+10
3
1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
OFFSET
0,9
COMMENTS
Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).
FORMULA
T(m, n) = Phi_m(n)
EXAMPLE
Read by antidiagonals:
m\n 0 1 2 3 4 5 6 7 8 9 10 11 12
------------------------------------------------------
0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 0 1 2 3 4 5 6 7 8 9 10 11
2 1 2 3 4 5 6 7 8 9 10 11 12 13
3 1 3 7 13 21 31 43 57 73 91 111 133 157
4 1 2 5 10 17 26 37 50 65 82 101 122 145
5 1 5 31 121 341 781 ... ... ... ... ... ... ...
6 1 1 3 7 13 21 31 43 57 73 91 111 133
etc.
The cyclotomic polynomials are:
n n-th cyclotomic polynomial
0 1
1 x-1
2 x+1
3 x^2+x+1
4 x^2+1
5 x^4+x^3+x^2+x+1
6 x^2-x+1
...
MATHEMATICA
Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
PROG
(PARI) t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
T(m, n) = if(m==0, 1, polcyclo(m, n))
a(n) = T(t1(n), t2(n))
CROSSREFS
Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).
KEYWORD
sign,easy,tabl,nice
AUTHOR
Eric Chen, Apr 22 2015
STATUS
approved
Square array A(n,k) = (n^(2*k + 1) + 1)/(n + 1), n >= 0, k >= 0, read by antidiagonals.
+10
2
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 7, 1, 1, 1, 43, 61, 13, 1, 1, 1, 171, 547, 205, 21, 1, 1, 1, 683, 4921, 3277, 521, 31, 1, 1, 1, 2731, 44287, 52429, 13021, 1111, 43, 1, 1, 1, 10923, 398581, 838861, 325521, 39991, 2101, 57, 1, 1, 1, 43691, 3587227, 13421773, 8138021, 1439671
OFFSET
0,9
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
A(n,k) = Sum_{j=0..2*k} (-n)^j.
EXAMPLE
Array begins:
=====================================================================
n/k | 0 1 2 3 4 5 6 ...
----+----------------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 3 11 43 171 683 2731 ...
3 | 1 7 61 547 4921 44287 398581 ...
4 | 1 13 205 3277 52429 838861 13421773 ...
5 | 1 21 521 13021 325521 8138021 203450521 ...
6 | 1 31 1111 39991 1439671 51828151 1865813431 ...
...
PROG
(PARI) A(n, k) = (n^(2*k + 1) + 1)/(n + 1) \\ Andrew Howroyd, May 03 2023
(Magma) /* as array */ [[&+[(-n)^j: j in [0..2*k]]: k in [0..6]]: n in [0..6]]; // Juri-Stepan Gerasimov, May 06 2023
CROSSREFS
Columns k=0..3 are A000012, A002061, A060884, A060888.
Rows n=2..4 are A007583, A066443, A299960.
Main diagonal is A179897.
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
a(49) corrected by Andrew Howroyd, Jan 20 2024
STATUS
approved
a(n) = n^18 + n^9 + 1.
+10
1
1, 3, 262657, 387440173, 68719738881, 3814699218751, 101559966746113, 1628413638264057, 18014398643699713, 150094635684419611, 1000000001000000001, 5559917315850179173, 26623333286045024257, 112455406962561892503, 426878854231297789441, 1477891880073843750001
OFFSET
0,2
COMMENTS
a(n) = Phi_27(n) where Phi_k(x) is the k-th cyclotomic polynomial.
MATHEMATICA
Table[n^18 + n^9 + 1, {n, 0, 17}] (* Vincenzo Librandi, Jul 15 2019 *)
Table[Cyclotomic[27, n], {n, 0, 17}]
PROG
(Magma) [n^18+n^9+1: n in [0..17]]; // Vincenzo Librandi, Jul 15 2019
(PARI) a(n) = polcyclo(27, n); \\ Michel Marcus, Jul 20 2019
CROSSREFS
Sequences of the type Phi_k(n), where Phi_k is the k-th cyclotomic polynomial: A000012 (k=0), A023443 (k=1), A000027 (k=2), A002061 (k=3), A002522 (k=4), A053699 (k=5), A002061 (k=6), A053716 (k=7), A002523 (k=8), A060883 (k=9), A060884 (k=10), A060885 (k=11), A060886 (k=12), A060887 (k=13), A060888 (k=14), A060889 (k=15), A060890 (k=16), A269442 (k=17), A060891 (k=18), A269446 (k=19), A060892 (k=20), A269483 (k=21), A269486 (k=22), A060893 (k=24), A269527 (k=25), A266229 (k=26), this sequence (k=27), A270204 (k=28), A060894 (k=30), A060895 (k=32), A060896 (k=36).
Cf. A153440 (indices of prime terms).
KEYWORD
nonn
AUTHOR
Richard N. Smith, Jul 15 2019
STATUS
approved

Search completed in 0.013 seconds