[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266229
a(n) = Sum_{j=0..12} (-n)^j.
2
1, 1, 2731, 398581, 13421773, 203450521, 1865813431, 12111126301, 61083979321, 254186582833, 909090909091, 2876892678661, 8230246567621, 21633936185161, 52914318216943, 121637191772461, 264917625139441, 550254335161441
OFFSET
0,3
COMMENTS
a(n) = Phi_26(n) where Phi_k(x) is the k-th cyclotomic polynomial.
LINKS
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
FORMULA
G.f.: (1 - 12*x + 2796*x^2 + 362870*x^3 + 8453667*x^4 + 59275152*x^5 + 155813880*x^6 + 167535876*x^7 + 74215935*x^8 + 12641708*x^9 + 691692*x^10 + 8022*x^11 + 13*x^12)/(1 - x)^13.
Sum_{n>=0} 1/a(n) = 2.0003687552...
MATHEMATICA
Table[n^12-n^11+n^10-n^9+n^8-n^7+n^6-n^5+n^4-n^3+n^2-n+1, {n, 0, 17}]
Table[Cyclotomic[26, n], {n, 0, 17}]
PROG
(PARI) a(n) = polcyclo(26, n); \\ Michel Marcus, Mar 13 2016
(Magma) [(&+[(-n)^j: j in [0..12]]): n in [0..20]]; // G. C. Greubel, Apr 24 2019
(Sage) [sum((-n)^j for j in (0..12)) for n in (0..20)] # G. C. Greubel, Apr 24 2019
(GAP) List([0..20], n-> Sum([0..12], j-> (-n)^j)) # G. C. Greubel, Apr 24 2019
CROSSREFS
Cf. similar sequences of the type Phi_k(n) listed in A269442.
Sequence in context: A308800 A104699 A116461 * A076575 A015423 A260543
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Mar 13 2016
EXTENSIONS
Name changed by G. C. Greubel, Apr 24 2019
STATUS
approved