[go: up one dir, main page]

login
Search: a069778 -id:a069778
     Sort: relevance | references | number | modified | created      Format: long | short | data
Digital root of A069778(n-1) = n^3 - n^2 + 1, n >= 1. Repeat(1, 6, 3, 7, 6, 6, 4, 6, 9).
+20
1
1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9
OFFSET
1,2
COMMENTS
Periodic with cycle of 9: {1, 6, 3, 7, 6, 6, 4, 6, 9}.
The decimal expansion of 54588823/333333333 = 0.repeat(163766469).
LINKS
Eric Weisstein's World of Mathematics, Digital Root.
FORMULA
a(n) = digital root of n^3 - n^2 + n.
EXAMPLE
For a(3) = 3 because 3^3 - 3^2 + 3 = 27 - 9 + 3 = 21 with digit sum 3 which is also the digital root of 21.
MATHEMATICA
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 6, 3, 7, 6, 6, 4, 6, 9}, 108] (* Ray Chandler, Jul 25 2016 *)
PROG
(PARI) DR(n)=s=sumdigits(n); while(s>9, s=sumdigits(s)); s
for(n=1, 100, print1(DR(abs(n^2-n-n^3)), ", ")) \\ Derek Orr, Dec 30 2014
CROSSREFS
KEYWORD
base,nonn,easy
AUTHOR
Peter M. Chema, Dec 08 2014
EXTENSIONS
More terms from Derek Orr, Dec 30 2014
Edited: name changed; formula, comment and example rewritten; digital root link added. - Wolfdieter Lang, Jan 05 2015
STATUS
approved
Connell sequence: 1 odd, 2 even, 3 odd, ...
(Formerly M0962 N0359)
+10
38
1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 26, 28, 30, 32, 34, 36, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 122
OFFSET
1,2
COMMENTS
Next (2n-1) odd numbers alternating with next 2n even numbers. Squares (A000290(n)) occur at the A000217(n)-th entry. - Lekraj Beedassy, Aug 06 2004. - Comment corrected by Daniel Forgues, Jul 18 2009
a(t_n) = a(n(n+1)/2) = n^2 relates squares to triangular numbers. - Daniel Forgues
The natural numbers not included are A118011(n) = 4n - a(n) as n=1,2,3,... - Paul D. Hanna, Apr 10 2006
As a triangle with row sums = A069778 (1, 6, 21, 52, 105, ...): /Q 1;/Q 2, 4;/Q 5, 7, 9;/Q 10, 12, 14, 16;/Q ... . - Gary W. Adamson, Sep 01 2008
The triangle sums, see A180662 for their definitions, link the Connell sequence A001614 as a triangle with six sequences, see the crossrefs. - Johannes W. Meijer, May 20 2011
a(n) = A122797(n) + n - 1. - Reinhard Zumkeller, Feb 12 2012
REFERENCES
C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 276.
C. A. Pickover, The Mathematics of Oz, Chapter 39, Camb. Univ. Press UK 2002.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ian Connell and Andrew Korsak, Problem E1382, Amer. Math. Monthly, 67 (1960), 380.
Douglas E. Iannucci and Donna Mills-Taylor, On Generalizing the Connell Sequence, J. Integer Sequences, Vol. 2, 1999, #99.1.7.
H. P. Robinson and N. J. A. Sloane, Correspondence, 1971-1972
N. J. A. Sloane, Handwritten notes on Self-Generating Sequences, 1970 (note that A1148 has now become A005282)
Gary E. Stevens, A Connell-Like Sequence, J. Integer Sequences, Vol. 1, 1998, #98.1.4.
Eric Weisstein's World of Mathematics, Connell Sequence
FORMULA
a(n) = 2*n - floor( (1+ sqrt(8*n-7))/2 ).
a(n) = A005843(n) - A002024(n). - Lekraj Beedassy, Aug 06 2004
a(n) = A118012(A118011(n)). A117384( a(n) ) = n; A117384( 4*n - a(n) ) = n. - Paul D. Hanna, Apr 10 2006
a(1) = 1; then a(n) = a(n-1)+1 if a(n-1) is a square, a(n) = a(n-1)+2 otherwise. For example, a(21)=36 is a square therefore a(22)=36+1=37 which is not a square so a(23)=37+2=39 ... - Benoit Cloitre, Feb 07 2007
T(n,k) = (n-1)^2 + 2*k - 1. - Omar E. Pol, Aug 13 2013
a(n)^2 = a(n*(n+1)/2). - Ivan N. Ianakiev, Aug 15 2013
Let the sequence be written in the form of the triangle in the EXAMPLE section below and let a(n) and a(n+1) belong to the same row of the triangle. Then a(n)*a(n+1) + 1 = a(A000217(A118011(n))) = A000290(A118011(n)). - Ivan N. Ianakiev, Aug 16 2013
a(n) = 2*n-round(sqrt(2*n)). - Gerald Hillier, Apr 15 2015
From Robert Israel, Apr 20 2015 (Start):
G.f. 2*x/(1-x)^2 - (x/(1-x))*sum(n>=0, x^(n*(n+1)/2))
= 2*x/(1-x)^2 - (Theta2(0,x^(1/2)))*x^(7/8)/(2*(1-x)) where Theta2 is a Jacobi theta function.
a(n) = 2*n-1 - Sum(i=0..n-2, A023531(i)). (End)
EXAMPLE
From Omar E. Pol, Aug 13 2013: (Start)
Written as a triangle the sequence begins:
1;
2, 4;
5, 7, 9;
10, 12, 14, 16;
17, 19, 21, 23, 25;
26, 28, 30, 32, 34, 36;
37, 39, 41, 43, 45, 47, 49;
50, 52, 54, 56, 58, 60, 62, 64;
65, 67, 69, 71, 73, 75, 77, 79, 81;
82, 84, 86, 88, 90, 92, 94, 96, 98, 100;
...
Right border gives A000290, n >= 1.
(End)
MAPLE
A001614:=proc(n): 2*n - floor((1+sqrt(8*n-7))/2) end: seq(A001614(n), n=1..67); # Johannes W. Meijer, May 20 2011
MATHEMATICA
lst={}; i=0; For[j=1, j<=4!, a=i+1; b=j; k=0; For[i=a, i<=9!, k++; AppendTo[lst, i]; If[k>=b, Break[]]; i=i+2]; j++ ]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)
row[n_] := 2*Range[n+1]+n^2-1; Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Oct 25 2013 *)
PROG
(Haskell)
a001614 n = a001614_list !! (n-1)
a001614_list = f 0 0 a057211_list where
f c z (x:xs) = z' : f x z' xs where z' = z + 1 + 0 ^ abs (x - c)
-- Reinhard Zumkeller, Dec 30 2011
(Magma) [2*n-Round(Sqrt(2*n)): n in [1..80]]; // Vincenzo Librandi, Apr 17 2015
(PARI) a(n)=2*n - round(sqrt(2*n)) \\ Charles R Greathouse IV, Apr 20 2015
(Python)
from math import isqrt
def A001614(n): return (m:=n<<1)-(k:=isqrt(m))-int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022
CROSSREFS
Cf. A117384, A118011 (complement), A118012.
Cf. A069778. - Gary W. Adamson, Sep 01 2008
From Johannes W. Meijer, May 20 2011: (Start)
Triangle columns: A002522, A117950 (n>=1), A117951 (n>=2), A117619 (n>=3), A154533 (n>=5), A000290 (n>=1), A008865 (n>=2), A028347 (n>=3), A028878 (n>=1), A028884 (n>=2), A054569 [T(2*n,n)].
Triangle sums (see the comments): A069778 (Row1), A190716 (Row2), A058187 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Fi1, Fi2, Ze1 and Ze2), A000292 (Related to Kn3, Kn4, Ca3, Ca4, Gi3 and Gi4), A190717 (Related to Ca1, Ca2, Ze3, Ze4), A190718 (Related to Gi1 and Gi2). (End)
KEYWORD
nonn,easy,nice,tabl
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Mar 16 2001
STATUS
approved
Array of q-factorial numbers n!_q, read by ascending antidiagonals.
+10
19
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 21, 4, 1, 1, 1, 120, 315, 52, 5, 1, 1, 1, 720, 9765, 2080, 105, 6, 1, 1, 1, 5040, 615195, 251680, 8925, 186, 7, 1, 1, 1, 40320, 78129765, 91611520, 3043425, 29016, 301, 8, 1, 1
OFFSET
0,8
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,q) = Product_{k=1..n} (q^k - 1) / (q - 1).
T(n,k) = Product_{n1=k..n-1} A104878(n1,k). - Johannes W. Meijer, Aug 21 2011
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 21, 52, 105, 186, 301, ...
1, 24, 315, 2080, 8925, 29016, 77959, ...
1, 120, 9765, 251680, 3043425, 22661496, 121226245, ...
...
MAPLE
A069777 := proc(n, k) local n1: mul(A104878(n1, k), n1=k..n-1) end: A104878 := proc(n, k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: seq(seq(A069777(n, k), k=0..n), n=0..9); # Johannes W. Meijer, Aug 21 2011
nmax:=9: T(0, 0):=1: for n from 1 to nmax do T(n, 0):=1: T(n, 1):= (n-1)! od: for q from 2 to nmax do for n from 0 to nmax do T(n+q, q) := product((q^k - 1)/(q - 1), k= 1..n) od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od; seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Aug 21 2011
# alternative Maple program:
T:= proc(n, k) option remember; `if`(n<2, 1,
T(n-1, k)*`if`(k=1, n, (k^n-1)/(k-1)))
end:
seq(seq(T(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Sep 08 2021
MATHEMATICA
(* Returns the rectangular array *) Table[Table[QFactorial[n, q], {q, 0, 6}], {n, 0, 6}] (* Geoffrey Critzer, May 21 2017 *)
PROG
(PARI) T(n, q)=prod(k=1, n, ((q^k - 1) / (q - 1))) \\ Andrew Howroyd, Feb 19 2018
CROSSREFS
Rows n=3..5 are A069778, A069779, A218503.
Main diagonal gives A347611.
Cf. A156173.
KEYWORD
easy,nonn,tabl
AUTHOR
EXTENSIONS
Name edited by Michel Marcus, Sep 08 2021
STATUS
approved
Triangle read by rows in which row n consists of the first n+1 n-gonal numbers.
+10
9
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 51, 1, 6, 15, 28, 45, 66, 91, 1, 7, 18, 34, 55, 81, 112, 148, 1, 8, 21, 40, 65, 96, 133, 176, 225, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Polygonal Number
FORMULA
Array of coefficients of x in the expansions of T(k, x) = (1 + k*x -(k-2)*x^2)/(1-x)^4, k > -4.
T(n, k) = k*((n-2)*k -(n-4))/2 (see MathWorld link). - Michel Marcus, Jun 22 2015
EXAMPLE
The array starts
1 1 3 10 ...
1 2 6 16 ...
1 3 9 22 ...
1 4 12 28 ...
The triangle starts
1;
1, 1;
1, 2, 3;
1, 3, 6, 10;
1, 4, 9, 16, 25;
...
MATHEMATICA
Table[PolygonalNumber[n, i], {n, 0, 10}, {i, n+1}]//Flatten (* Requires Mathematica version 10.4 or later *) (* Harvey P. Dale, Aug 27 2016 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, for (k=1, n+1, print1(k*((n-2)*k-(n-4))/2, ", "); ); print(); ); } \\ Michel Marcus, Jun 22 2015
(Magma) [[k*((n-2)*k-(n-4))/2: k in [1..n+1]]: n in [0..10]]; // G. C. Greubel, Oct 13 2018
(Sage) [[k*((n-2)*k -(n-4))/2 for k in (1..n+1)] for n in (0..10)] # G. C. Greubel, Aug 14 2019
(GAP) Flat(List([0..10], n-> List([1..n+1], k-> k*((n-2)*k-(n-4))/2 ))); # G. C. Greubel, Aug 14 2019
CROSSREFS
Antidiagonals are composed of n-gonal numbers.
KEYWORD
easy,nonn,tabl,look
AUTHOR
Paul Barry, Mar 21 2003
STATUS
approved
a(n) = n*(5*n^2-8*n+5)/2.
+10
8
0, 1, 9, 39, 106, 225, 411, 679, 1044, 1521, 2125, 2871, 3774, 4849, 6111, 7575, 9256, 11169, 13329, 15751, 18450, 21441, 24739, 28359, 32316, 36625, 41301, 46359, 51814, 57681, 63975, 70711, 77904, 85569, 93721, 102375, 111546, 121249, 131499, 142311, 153700
OFFSET
0,3
COMMENTS
Sequences of the type b(m)+m*b(m-1), where b is a polygonal number:
A006003(n) = A000217(n) + n*A000217(n-1) (b = triangular numbers);
A069778(n) = A000290(n+1) + (n+1)*A000290(n) (b = square numbers);
A143690(n) = A000326(n+1) + (n+1)*A000326(n) (b = pentagonal numbers);
A212133(n) = A000384(n) + n*A000384(n-1) (b = hexagonal numbers);
a(n) = A000566(n) + n*A000566(n-1) (b = heptagonal numbers);
A226450(n) = A000567(n) + n*A000567(n-1) (b = octagonal numbers);
A226451(n) = A001106(n) + n*A001106(n-1) (b = nonagonal numbers);
A204674(n) = A001107(n+1) + (n+1)*A001107(n) (b = decagonal numbers).
FORMULA
G.f.: x*(1+5*x+9*x^2)/(1-x)^4.
a(n) - a(-n) = A008531(n) for n>0.
MATHEMATICA
Table[n (5 n^2 - 8 n + 5)/2, {n, 0, 40}]
CoefficientList[Series[x (1 + 5 x + 9 x^2)/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 9, 39}, 50] (* Harvey P. Dale, May 19 2017 *)
PROG
(Magma) [n*(5*n^2-8*n+5)/2: n in [0..40]];
(Magma) I:=[0, 1, 9, 39]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
(PARI) a(n)=n*(5*n^2-8*n+5)/2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 07 2013
STATUS
approved
a(n) = n^3 + 2*n^2 + 4*n + 1.
+10
8
1, 8, 25, 58, 113, 196, 313, 470, 673, 928, 1241, 1618, 2065, 2588, 3193, 3886, 4673, 5560, 6553, 7658, 8881, 10228, 11705, 13318, 15073, 16976, 19033, 21250, 23633, 26188, 28921, 31838, 34945, 38248, 41753, 45466, 49393, 53540, 57913, 62518, 67361, 72448
OFFSET
0,2
COMMENTS
Numbers of the type (m+1)^3 - (m-1)*m. Similar sequences are: A069778 with the closed form (m+1)^3 - m*(m+1), A152015 with (m+1)^3 - (m+1)*(m+2).
LINKS
Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015 (page 19, 4th row; page 21, 3rd row).
FORMULA
O.g.f.: (1 + 4*x - x^2 + 2*x^3)/(1 - x)^4.
E.g.f.: (1 + 7*x + 5*x^2 + x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = -A270109(-n-1). - Bruno Berselli, Apr 01 2016
a(n+2) - 2*a(n+1) + a(n) = A016957(n+1). - Wesley Ivan Hurt, Apr 02 2016
MAPLE
A270867:=n->n^3+2*n^2+4*n+1: seq(A270867(n), n=0..100); # Wesley Ivan Hurt, Apr 01 2016
MATHEMATICA
Table[n^3 + 2 n^2 + 4 n + 1, {n, 0, 40}]
PROG
(Magma) [n^3+2*n^2+4*n+1: n in [0..50]];
(PARI) x='x+O('x^99); Vec((1+4*x-x^2+2*x^3)/(1-x)^4) \\ Altug Alkan, Apr 01 2016
(Python) for i in range(0, 100):print(i**3+2*i**2+4*i+1) # Soumil Mandal, Apr 02 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 01 2016
STATUS
approved
a(n) = n^3-(n+1)^2.
+10
6
-1, -3, -1, 11, 39, 89, 167, 279, 431, 629, 879, 1187, 1559, 2001, 2519, 3119, 3807, 4589, 5471, 6459, 7559, 8777, 10119, 11591, 13199, 14949, 16847, 18899, 21111, 23489, 26039, 28767, 31679, 34781, 38079, 41579, 45287, 49209, 53351, 57719
OFFSET
0,2
MATHEMATICA
Table[n^3-(n+1)^2, {n, 0, 40}] (* Harvey P. Dale, Oct 05 2022 *)
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved
Array read by antidiagonals: number of {112,221}-avoiding words.
+10
4
1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 6, 21, 16, 5, 1, 6, 33, 52, 25, 6, 1, 6, 33, 124, 105, 36, 7, 1, 6, 33, 196, 345, 186, 49, 8, 1, 6, 33, 196, 825, 786, 301, 64, 9, 1, 6, 33, 196, 1305, 2586, 1561, 456, 81, 10, 1, 6, 33, 196, 1305, 6186, 6601, 2808, 657, 100, 11
OFFSET
1,3
COMMENTS
A(n,k) is the number of n-long k-ary words that simultaneously avoid the patterns 112 and 221.
LINKS
A. Burstein and T. Mansour, Words restricted by patterns with at most 2 distinct letters, arXiv:math/0110056 [math.CO], 2001.
FORMULA
A(n, k) = k!*binomial(n, k) + Sum_{j=1..k-1} j*j!*binomial(n, j), for 2 <= k <= n, otherwise Sum_{j=1..n} j*j!*binomial(n, j), with A(1, k) = 1 and A(n, 1) = n.
From G. C. Greubel, Dec 29 2021: (Start)
T(n, k) = A(k, n-k+1).
Sum_{k=1..n} T(n, k) = A093963(n).
T(n, 1) = 1.
T(n, n) = n.
T(n, n-1) = (n-1)^2.
T(n, n-2) = A069778(n).
T(2*n-1, n) = A093965(n).
T(2*n, n) = A093964(n), for n >= 1. (End)
EXAMPLE
Array, A(n, k), begins as:
1, 1, 1, 1, 1, 1, 1 ... 1*A000012(k);
2, 4, 6, 6, 6, 6, 6 ... 2*A158799(k-1);
3, 9, 21, 33, 33, 33, 33 ... ;
4, 16, 52, 124, 196, 196, 196 ... ;
5, 25, 105, 345, 825, 1305, 1305 ... ;
6, 36, 186, 786, 2586, 6186, 9786 ... ;
7, 49, 301, 1561, 6601, 21721, 51961 ... ;
Antidiagonal triangle, T(n, k), begins as:
1;
1, 2;
1, 4, 3;
1, 6, 9, 4;
1, 6, 21, 16, 5;
1, 6, 33, 52, 25, 6;
1, 6, 33, 124, 105, 36, 7;
1, 6, 33, 196, 345, 186, 49, 8;
1, 6, 33, 196, 825, 786, 301, 64, 9;
1, 6, 33, 196, 1305, 2586, 1561, 456, 81, 10;
MATHEMATICA
A[n_, k_]:= A[n, k]= If[n==1, 1, If[k==1, n, If[2<=k<n+1, (1-k)*k!*Binomial[n, k] + Sum[j*j!*Binomial[n, j], {j, k}], Sum[j*j!*Binomial[n, j], {j, n}] ]]];
T[n_, k_]:= A[k, n-k+1];
Table[T[k, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 29 2021 *)
PROG
(PARI) A(n, k) = if(n >= k+1, sum(j=1, k, j*j!*binomial(k, j)), if(n<2, if(n<1, 0, k), n!*binomial(k, n) + sum(j=1, n-1, j*j!*binomial(k, j))));
T(n, k) = A(n-k+1, k);
for(n=1, 15, for(k=1, n, print1(T(n, k), ", ") ) )
(Sage)
@CachedFunction
def A(n, k):
if (n==1): return 1
elif (k==1): return n
elif (2 <= k < n+1): return factorial(k)*binomial(n, k) + sum( j*factorial(j)*binomial(n, j) for j in (1..k-1) )
else: return sum( j*factorial(j)*binomial(n, j) for j in (1..n) )
def T(n, k): return A(k, n-k+1)
flatten([[T(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Dec 29 2021
CROSSREFS
Cf. A069778, A093963 (antidiagonal sums), A093964, A093965 (main diagonal).
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Apr 20 2004
STATUS
approved
q-factorial numbers 4!_q.
+10
3
1, 24, 315, 2080, 8925, 29016, 77959, 182400, 384345, 746200, 1356531, 2336544, 3847285, 6097560, 9352575, 13943296, 20276529, 28845720, 40242475, 55168800, 74450061, 99048664, 130078455, 168819840, 216735625, 275487576, 346953699, 433246240, 536730405, 660043800
OFFSET
0,2
FORMULA
a(n) = (n + 1)*(n^2 + n + 1)*(n^3 + n^2 + n + 1).
G.f.: (1 + 17*x + 8*x^2*(21 + 43*x) + 5*x^4*(35 + 3*x))/(1 - x)^7. - Arkadiusz Wesolowski, Nov 01 2012
MATHEMATICA
Table[QFactorial[4, n], {n, 0, 29}] (* Arkadiusz Wesolowski, Nov 01 2012 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 24, 315, 2080, 8925, 29016, 77959}, 30] (* Harvey P. Dale, Aug 30 2020 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved
q-factorial numbers 5!_q.
+10
3
1, 120, 9765, 251680, 3043425, 22661496, 121226245, 510902400, 1799118945, 5507702200, 15072415941, 37630041120, 87029433985, 188664603960, 386925380325, 756298318336, 1417430759745, 2559798038520, 4472991338725, 7589075296800, 12538953723681
OFFSET
0,2
FORMULA
a(n) = (n + 1)*(n^2 + n + 1)*(n^3 + n^2 + n + 1)*(n^4 + n^3 + n^2 + n + 1).
G.f.: (1 + x*(109 + x*(8500 + x*(150700 + x*(792550 + x*(1454134 + x*(978436 + 5*x*(45788 + x*(3053 + 33*x)))))))))/(1 - x)^11.
MATHEMATICA
Table[QFactorial[5, n], {n, 0, 20}]
Join[{1}, With[{f=Times@@Table[Total[n^Range[0, i]], {i, 4}]}, Table[f, {n, 20}]]] (* or *) LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 120, 9765, 251680, 3043425, 22661496, 121226245, 510902400, 1799118945, 5507702200, 15072415941}, 30] (* Harvey P. Dale, Sep 04 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved

Search completed in 0.015 seconds