[go: up one dir, main page]

login
Search: a069779 -id:a069779
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array of q-factorial numbers n!_q, read by ascending antidiagonals.
+10
19
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 21, 4, 1, 1, 1, 120, 315, 52, 5, 1, 1, 1, 720, 9765, 2080, 105, 6, 1, 1, 1, 5040, 615195, 251680, 8925, 186, 7, 1, 1, 1, 40320, 78129765, 91611520, 3043425, 29016, 301, 8, 1, 1
OFFSET
0,8
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,q) = Product_{k=1..n} (q^k - 1) / (q - 1).
T(n,k) = Product_{n1=k..n-1} A104878(n1,k). - Johannes W. Meijer, Aug 21 2011
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 21, 52, 105, 186, 301, ...
1, 24, 315, 2080, 8925, 29016, 77959, ...
1, 120, 9765, 251680, 3043425, 22661496, 121226245, ...
...
MAPLE
A069777 := proc(n, k) local n1: mul(A104878(n1, k), n1=k..n-1) end: A104878 := proc(n, k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: seq(seq(A069777(n, k), k=0..n), n=0..9); # Johannes W. Meijer, Aug 21 2011
nmax:=9: T(0, 0):=1: for n from 1 to nmax do T(n, 0):=1: T(n, 1):= (n-1)! od: for q from 2 to nmax do for n from 0 to nmax do T(n+q, q) := product((q^k - 1)/(q - 1), k= 1..n) od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od; seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Aug 21 2011
# alternative Maple program:
T:= proc(n, k) option remember; `if`(n<2, 1,
T(n-1, k)*`if`(k=1, n, (k^n-1)/(k-1)))
end:
seq(seq(T(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Sep 08 2021
MATHEMATICA
(* Returns the rectangular array *) Table[Table[QFactorial[n, q], {q, 0, 6}], {n, 0, 6}] (* Geoffrey Critzer, May 21 2017 *)
PROG
(PARI) T(n, q)=prod(k=1, n, ((q^k - 1) / (q - 1))) \\ Andrew Howroyd, Feb 19 2018
CROSSREFS
Rows n=3..5 are A069778, A069779, A218503.
Main diagonal gives A347611.
Cf. A156173.
KEYWORD
easy,nonn,tabl
AUTHOR
EXTENSIONS
Name edited by Michel Marcus, Sep 08 2021
STATUS
approved
q-factorial numbers 3!_q.
+10
19
1, 6, 21, 52, 105, 186, 301, 456, 657, 910, 1221, 1596, 2041, 2562, 3165, 3856, 4641, 5526, 6517, 7620, 8841, 10186, 11661, 13272, 15025, 16926, 18981, 21196, 23577, 26130, 28861, 31776, 34881, 38182, 41685, 45396, 49321, 53466, 57837, 62440, 67281, 72366
OFFSET
0,2
COMMENTS
Number of proper n-colorings of the 4-cycle with one vertex color fixed (offset 2). - Michael Somos, Jul 19 2002
n such that x^3 + x^2 + x + n factors over the integers. - James R. Buddenhagen, Apr 19 2005
If Y is a 4-subset of an n-set X then, for n>=5, a(n-5) is the number of 5-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Equals row sums of the Connell (A001614) sequence read as a triangle. - Gary W. Adamson, Sep 01 2008
Binomial transform of 1, 5, 10, 6, 0, 0, 0 (0 continued). - Philippe Deléham, Mar 17 2014
Digital root is A251780. - Peter M. Chema, Jul 11 2016
REFERENCES
T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.
FORMULA
a(n) = (n + 1)*(n^2 + n + 1).
a(n) = (n+1)^3-2*T(n) where T(n) =n*(n+1)/2= A000217(n) is the n-th triangular number. - Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006
a(n) = n^8 mod (n^3+n), with offset 1..a(1)=1. - Gary Detlefs, May 02 2010
a(n) = 4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4), n>3. - Harvey P. Dale, Jul 11 2011
G.f.: (1+2*x+3*x^2)/(1-x)^4. - Harvey P. Dale, Jul 11 2011
For n>0 a(n) = Sum_{k=A000217(n-1)...A000217(n+1)} k. - J. M. Bergot, Feb 11 2015
E.g.f.: (1 + 5*x + 5*x^2 + x^3)*exp(x). - Ilya Gutkovskiy, Jul 11 2016
EXAMPLE
For 2-colorings only 1212 is proper so a(2-2)=1. The proper 3-colorings are: 1212,1313,1213,1312,1232,1323 so a(3-2)=6.
a(0) = 1*1 = 1;
a(1) = 1*1 + 5*1 = 6;
a(2) = 1*1 + 5*2 + 10*1 = 21;
a(3) = 1*1 + 5*3 + 10*3 + 6*1 = 52;
a(4) = 1*1 + 5*4 + 10*6 + 6*4 = 105; etc. - Philippe Deléham, Mar 17 2014
MAPLE
A069778 := proc(n)
(n+1)*(n^2+n+1) ;
end proc: # R. J. Mathar, Aug 24 2013
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {1, 6, 21, 52}, 41] (* or *) Table[(n + 1) (n^2 + n + 1), {n, 0, 41}] (* Harvey P. Dale, Jul 11 2011 *)
Table[QFactorial[3, n], {n, 0, 41}] (* Arkadiusz Wesolowski, Oct 31 2012 *)
PROG
(PARI) a(n)=(n+1)*(n^2+n+1)
CROSSREFS
Cf. A069777, A069779, A218503, A056108 (first differences).
Cf. A001614. - Gary W. Adamson, Sep 01 2008
Cf. A226449. - Bruno Berselli, Jun 09 2013
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
q-factorial numbers 5!_q.
+10
3
1, 120, 9765, 251680, 3043425, 22661496, 121226245, 510902400, 1799118945, 5507702200, 15072415941, 37630041120, 87029433985, 188664603960, 386925380325, 756298318336, 1417430759745, 2559798038520, 4472991338725, 7589075296800, 12538953723681
OFFSET
0,2
FORMULA
a(n) = (n + 1)*(n^2 + n + 1)*(n^3 + n^2 + n + 1)*(n^4 + n^3 + n^2 + n + 1).
G.f.: (1 + x*(109 + x*(8500 + x*(150700 + x*(792550 + x*(1454134 + x*(978436 + 5*x*(45788 + x*(3053 + 33*x)))))))))/(1 - x)^11.
MATHEMATICA
Table[QFactorial[5, n], {n, 0, 20}]
Join[{1}, With[{f=Times@@Table[Total[n^Range[0, i]], {i, 4}]}, Table[f, {n, 20}]]] (* or *) LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 120, 9765, 251680, 3043425, 22661496, 121226245, 510902400, 1799118945, 5507702200, 15072415941}, 30] (* Harvey P. Dale, Sep 04 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved

Search completed in 0.005 seconds