[go: up one dir, main page]

login
Search: a052649 -id:a052649
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n! + (n-1)!.
(Formerly M0890 N0337)
+10
43
2, 3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680, 43545600, 518918400, 6706022400, 93405312000, 1394852659200, 22230464256000, 376610217984000, 6758061133824000, 128047474114560000, 2554547108585472000, 53523844179886080000, 1175091669949317120000
OFFSET
1,1
COMMENTS
Number of {12, 12*, 1*2, 21, 21*}-avoiding signed permutations in the hyperoctahedral group.
a(n) is the hook product of the shape (n, 1). - Emeric Deutsch, May 13 2004
From Jaume Oliver Lafont, Dec 01 2009: (Start)
(1+(x-1)*exp(x))/x = Sum_{k >= 1} x^k/a(k).
Setting x = 1 yields Sum_{k >= 1} 1/a(k) = 1. [Jolley eq 302] (End)
With regard to the comment by Jaume Oliver Lafont: P(n) = 1/a(n) is a probability distribution, with all values given as unit fractions. This distribution is connected to the Irwin-Hall distribution: Consider successively drawn random numbers, uniformly distributed in [0,1]. 1/a(n) is the probability for the sum of the random numbers exceeding 1 exactly with the (n+1)-th summand. P(n) has mean e-1 and variance 3e-e^2. From this we get e as the expected number of summands. - Manfred Boergens, May 20 2024
For n >= 2, a(n) is the size of the largest conjugacy class of the symmetric group on n + 1 letters. Equivalently, the maximum entry in each row of A036039. - Geoffrey Critzer, May 19 2013
In factorial base representation (A007623) the terms are written as: 10, 11, 110, 1100, 11000, 110000, ... From a(2) = 3 = "11" onward each term begins always with two 1's, followed by n-2 zeros. - Antti Karttunen, Sep 24 2016
e is approximately a(n)/A000255(n-1) for large n. - Dale Gerdemann, Jul 26 2019
a(n) is the number of permutations of [n+1] in which all the elements of [n] are cycle-mates, that is, 1,..,n are all in the same cycle. This result is readily shown after noting that the elements of [n] can be members of a n-cycle or an (n+1)-cycle. Hence a(n)=(n-1)!+n!. See an example below. - Dennis P. Walsh, May 24 2020
REFERENCES
L. B. W. Jolley, Summation of Series, Dover, 1961.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Barry Balof and Helen Jenne, Tilings, Continued Fractions, Derangements, Scramblings, and e, Journal of Integer Sequences, Vol. 17 (2014), #14.2.7.
E. Biondi, L. Divieti, and G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math., Vol. 22, No. 1 (1970), pp. 22-35.
Helen K. Jenne, Proofs you can count on, Honors Thesis, Math. Dept., Whitman College, 2013.
B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume.
T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002.
Eric Weisstein's World of Mathematics, Uniform Sum Distribution.
FORMULA
a(n) = (n+1)*(n-1)!.
E.g.f.: x/(1-x) - log(1-x). - Ralf Stephan, Apr 11 2004
The sequence 1, 3, 8, ... has g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n + 2 - 0^n) = n!A065475(n) (offset 0). - Paul Barry, May 14 2004
a(n) = (n+1)!/n. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
Factorial expansion of 1: 1 = sum_{n > 0} 1/a(n) [Jolley eq 302]. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003
a(1) = 2, a(2) = 3, D-finite recurrence a(n) = (n^2 - n - 2)*a(n-2) for n >= 3. - Jaume Oliver Lafont, Dec 01 2009
a(n) = ((n+2)A052649(n) - A052649(n+1))/2. - Gary Detlefs, Dec 16 2009
G.f.: U(0) where U(k) = 1 + (k+1)/(1 - x/(x + 1/U(k+1))) ; (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
G.f.: 2*(1+x)/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013
a(n) = (n-1)*a(n-1) + (n-1)!. - Bruno Berselli, Feb 22 2017
a(1)=2, a(2)=3, D-finite recurrence a(n) = (n-1)*a(n-1) + (n-2)*a(n-2). - Dale Gerdemann, Jul 26 2019
a(n) = 2*A000255(n-1) + A096654(n-2). - Dale Gerdemann, Jul 26 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2/e (A334397). - Amiram Eldar, Jan 13 2021
EXAMPLE
For n=3, a(3) counts the 8 permutations of [4] with 1,2, and 3 all in the same cycle, namely, (1 2 3)(4), (1 3 2)(4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 4 3), (1 4 2 3), and (1 4 3 2). - Dennis P. Walsh, May 24 2020
MAPLE
seq(n!+(n-1)!, n=1..25);
MATHEMATICA
Table[n! + (n + 1)!, {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 14 2011 *)
Total/@Partition[Range[0, 20]!, 2, 1] (* Harvey P. Dale, Nov 29 2013 *)
PROG
(Magma) [Factorial(n)+Factorial(n+1): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014
(PARI) a(n)=denominator(polcoeff((x-1)*exp(x+x*O(x^(n+1))), n+1)); \\ Gerry Martens, Aug 12 2015
(PARI) vector(30, n, (n+1)*(n-1)!) \\ Michel Marcus, Aug 12 2015
CROSSREFS
Apart from initial terms, same as A059171.
Equals the square root of the first right hand column of A162990. - Johannes W. Meijer, Jul 21 2009
From a(2)=3 onward the second topmost row of arrays A276588 and A276955.
Cf. sequences with formula (n + k)*n! listed in A282466, A334397.
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers, Sep 19 2000
STATUS
approved
Square array A(row,col): A(row,1) = A273670(row-1), and for col > 1, A(row,col) = A153880(A(row,col-1)); Dispersion of factorial base left shift A153880.
+10
20
1, 2, 3, 6, 8, 4, 24, 30, 12, 5, 120, 144, 48, 14, 7, 720, 840, 240, 54, 26, 9, 5040, 5760, 1440, 264, 126, 32, 10, 40320, 45360, 10080, 1560, 744, 150, 36, 11, 362880, 403200, 80640, 10800, 5160, 864, 168, 38, 13, 3628800, 3991680, 725760, 85680, 41040, 5880, 960, 174, 50, 15, 39916800, 43545600, 7257600, 766080, 367920, 46080, 6480, 984, 246, 56, 16
OFFSET
1,2
COMMENTS
The square array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
When viewed in factorial base (A007623) the terms on each row start all with the same prefix, but with an increasing number of zeros appended to the end. For example, for row 8 (A001344 from a(1)=11 onward), the terms written in factorial base look as: 121, 1210, 12100, 121000, ...
FORMULA
A(row,1) = A273670(row-1), and for col > 1, A(row,col) = A153880(A(row,col-1))
As a composition of other permutations:
a(n) = A275848(A257505(n)).
EXAMPLE
The top left {1..9} x {1..18} corner of the array:
1, 2, 6, 24, 120, 720, 5040, 40320, 362880
3, 8, 30, 144, 840, 5760, 45360, 403200, 3991680
4, 12, 48, 240, 1440, 10080, 80640, 725760, 7257600
5, 14, 54, 264, 1560, 10800, 85680, 766080, 7620480
7, 26, 126, 744, 5160, 41040, 367920, 3669120, 40279680
9, 32, 150, 864, 5880, 46080, 408240, 4032000, 43908480
10, 36, 168, 960, 6480, 50400, 443520, 4354560, 47174400
11, 38, 174, 984, 6600, 51120, 448560, 4394880, 47537280
13, 50, 246, 1464, 10200, 81360, 730800, 7297920, 80196480
15, 56, 270, 1584, 10920, 86400, 771120, 7660800, 83825280
16, 60, 288, 1680, 11520, 90720, 806400, 7983360, 87091200
17, 62, 294, 1704, 11640, 91440, 811440, 8023680, 87454080
18, 72, 360, 2160, 15120, 120960, 1088640, 10886400, 119750400
19, 74, 366, 2184, 15240, 121680, 1093680, 10926720, 120113280
20, 78, 384, 2280, 15840, 126000, 1128960, 11249280, 123379200
21, 80, 390, 2304, 15960, 126720, 1134000, 11289600, 123742080
22, 84, 408, 2400, 16560, 131040, 1169280, 11612160, 127008000
23, 86, 414, 2424, 16680, 131760, 1174320, 11652480, 127370880
PROG
(Scheme)
(define (A276955 n) (A276955bi (A002260 n) (A004736 n)))
(define (A276955bi row col) (if (= 1 col) (A273670 (- row 1)) (A153880 (A276955bi row (- col 1)))))
CROSSREFS
Inverse permutation: A276956.
Transpose: A276953.
Cf. A276949 (index of column where n appears), A276951 (index of row).
Cf. A153880.
Columns 1-3: A273670, A276932, A276933.
The following lists some of the rows that have their own entries. Pattern present in the factorial base expansion of the terms on that row is given in double quotes:
Row 1: A000142 (from a(1)=1, "1" onward),
Row 2: A001048 (from a(2)=3, "11" onward),
Row 3: A052849 (from a(2)=4, "20" onward).
Row 4: A052649 (from a(1)=5, "21" onward).
Row 5: A108217 (from a(3)=7, "101" onward).
Row 6: A054119 (from a(3)=9, "111" onward).
Row 7: A052572 (from a(2)=10, "120" onward).
Row 8: A001344 (from a(1)=11, "121" onward).
Row 13: A052560 (from a(3)=18, "300" onward).
Row 16: A225658 (from a(1)=21, "311" onward).
Row 20: A276940 (from a(3) = 27, "1011" onward).
Related or similar permutations: A257505, A275848, A273666.
Cf. also arrays A276617, A276588 & A276945.
KEYWORD
nonn,base,tabl
AUTHOR
Antti Karttunen, Sep 22 2016
STATUS
approved
a(n) = (2*n+1)*(n-1)!.
+10
9
3, 5, 14, 54, 264, 1560, 10800, 85680, 766080, 7620480, 83462400, 997920000, 12933043200, 180583603200, 2702527027200, 43153254144000, 732297646080000, 13160434839552000, 249692574523392000, 4987449116762112000, 104614786351595520000, 2299092397726924800000
OFFSET
1,1
COMMENTS
a(n) = A052649(n-1), n > 1 (i.e., A052649 with a(0) omitted).
LINKS
FORMULA
a(n) = A052649(n-1), n > 1. - R. J. Mathar, Jun 14 2008
a(n) = (n+1)!*h(n+1) - n*(n+1)*(n-1)!*h(n-1), where h(n) = Sum_{k=1..n} 1/k. - Gary Detlefs, Jul 19 2011
E.g.f.: 2*x/(1-x) - log(1-x). - G. C. Greubel, Nov 02 2018
Sum_{n>=1} 1/a(n) = e/2 - sqrt(Pi)*erfi(1)/4. - Amiram Eldar, Oct 07 2020
MATHEMATICA
Table[(2n+1)(n-1)!, {n, 30}] (* Harvey P. Dale, Mar 23 2012 *)
PROG
(Magma) [(2*n+1)*Factorial(n-1): n in [1..25]]; // Vincenzo Librandi, Aug 07 2011
(PARI) vector(30, n, (2*n+1)*(n-1)!) \\ G. C. Greubel, Nov 02 2018
CROSSREFS
Cf. A052649.
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 26 2007
EXTENSIONS
More terms from N. J. A. Sloane, Nov 08 2007
STATUS
approved
Array read by antidiagonals: T(m,n) = Sum(1<=i<=m) [ i*(n-1+i)! ]
+10
2
1, 2, 5, 6, 14, 23, 24, 54, 86, 119, 120, 264, 414, 566, 719, 720, 1560, 2424, 3294, 4166, 5039, 5040, 10800, 16680, 22584, 28494, 34406, 40319, 40320, 85680, 131760, 177960, 224184, 270414, 316646, 362879, 362880, 766080, 1174320, 1583280
OFFSET
1,2
COMMENTS
Inversion vector corresponding to T(m,n): ( n zeros , 1,2,3,...,m , zeros... )
These are the numbers of permutations (in reverse colexicographical order, compare A055089) that reverse a set of consecutive elements and leave all other elements unchanged. Permutation A(m,n) reverses all elements from n to m+n.
The former title of this sequence refers to finite tables of permutations in lexicographical order: "Triangle read by rows: row n gives the index number in the tables of permutations of order n+1, n+2, ... of the permutation in which the first n items are reversed and the remaining items are in order."
LINKS
Tilman Piesk, Inversion (discrete mathematics) (Wikiversity)
EXAMPLE
T(3,2) = Sum( 1 <= i <= 3 ) [ i * (1+i)! ]
= 1*(1+1)! + 2*(1+2)! + 3*(1+3)!
= 1*2 + 2*6 + 3*24
= 86
PROG
MATLAB code is shown on the Wikiversity page.
Using Iverson's J language, A. p for a permutation p gives the row number in the table of permutations of order (length of p) which has p as its value. For example, q 0 4 9 6 7 5 1 11 8 10 2 3 A. q 13610272.
CROSSREFS
See A100711 for another version. Row 2 is A052649.
KEYWORD
easy,nonn,tabl
AUTHOR
Eugene McDonnell (eemcd(AT)mac.com), Dec 03 2004
EXTENSIONS
Rewritten by Tilman Piesk, Jul 13 2012
STATUS
approved
Array read by antidiagonals: T(m,n) = m*(m+n-1)! + Sum( n <= i <= m+n-2 ) i!
+10
2
1, 2, 5, 6, 14, 21, 24, 54, 80, 105, 120, 264, 390, 512, 633, 720, 1560, 2304, 3030, 3752, 4473, 5040, 10800, 15960, 21024, 26070, 31112, 36153, 40320, 85680, 126720, 167160, 207504, 247830, 288152, 328473, 362880, 766080, 1134000
OFFSET
1,2
COMMENTS
Index numbers (compare A055089) of transpositions.
LINKS
Tilman Piesk, Arrays of permutations (Wikiversity)
FORMULA
T(m,1) = A001563(m) + A007489(m-1). - R. J. Mathar, May 11 2013
EXAMPLE
T(3,2) = 3*4! + Sum( 2 <= i <= 3 ) i!
= 3*4! + 2! + 3!
= 3*24 + 2 + 6 = 80.
The array starts:
1, 2, 6, 24, 120,...
5, 14, 54, 264, 1560,...
21, 80, 390, 2304, 15960,...
105, 512, 3030, 21024,167160,...
633, 3752, 26070,207504,1860600,...
MAPLE
A211369 := proc(m, n)
m*(m+n-1)!+add(i!, i=n..m+n-2) ;
end proc: # R. J. Mathar, May 10 2013
CROSSREFS
Cf. A055089, A000142 (row 1), A052649 (row 2)
KEYWORD
nonn,tabl
AUTHOR
Tilman Piesk, Jul 07 2012
STATUS
approved

Search completed in 0.010 seconds