[go: up one dir, main page]

login
A065475
Natural numbers excluding 2.
11
1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
OFFSET
1,2
COMMENTS
From the following 4 disjoint subsets of natural numbers A = {1}, B = {2}, OP = {odd primes}, C = {composites}, 16 sets are derivable: A000027 versus empty set, A002808 vs A008578, A065091 vs A065090, A000040 vs A018252, A006005 vs {{2} with A002808}, {1} vs {A000027 excluding 1}, {2} versus this sequence, {1, 2} versus Union[OP, C].
a(n) is the sum of the obvious divisors of n, which are 1 and n.
The natural numbers excluding 2 are the order numbers of magic squares. Order 2 magic squares do not exist. - William Walkington, Mar 12 2016
The numbers occurring at least twice in Pascal's triangle (A007318, A003016). - Rick L. Shepherd, Jun 05 2016
FORMULA
G.f.: x*(1+x-x^2)/(1-x)^2. - Paul Barry, Aug 05 2004
a(n) = A000203(n) - A048050(n).
a(n) = n+1 for n>1, a(n) = a(n-1)+1 for n>2. - Wesley Ivan Hurt, Mar 13 2016
E.g.f.: (x + 1)*(exp(x) - 1). - Ilya Gutkovskiy, Jun 05 2016
a(n) = n + [n>1], a(n) = 1+n-floor(1/n). - Alan Michael Gómez Calderón, May 12 2023
MAPLE
printlevel := -1; a := [1]; T := x->LambertW(-x); f := series(((1+T(x)))/(1-T(x)), x, 77); for m from 3 to 77 do a := [op(a), op(2*m, f)] od; print(a); # Zerinvary Lajos, Mar 28 2009
MATHEMATICA
Join[{1}, Range[3, 100]] (* Wesley Ivan Hurt, Mar 13 2016 *)
Drop[Range[100], {2}] (* Harvey P. Dale, Aug 11 2024 *)
PROG
(PARI) a(n)=n+(n>1) \\ Charles R Greathouse IV, Sep 01 2015
(PARI) x='x+O('x^99); Vec((1+x-x^2)/(1-x)^2) \\ Altug Alkan, Mar 26 2016
(Magma) &cat[[1], [n : n in [3..100]]]; // Wesley Ivan Hurt, Mar 13 2016
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Nov 16 2001
EXTENSIONS
Incorrect formula removed by Charles R Greathouse IV, Mar 18 2010
STATUS
approved