# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001048 Showing 1-1 of 1 %I A001048 M0890 N0337 #140 May 20 2024 11:04:50 %S A001048 2,3,8,30,144,840,5760,45360,403200,3991680,43545600,518918400, %T A001048 6706022400,93405312000,1394852659200,22230464256000,376610217984000, %U A001048 6758061133824000,128047474114560000,2554547108585472000,53523844179886080000,1175091669949317120000 %N A001048 a(n) = n! + (n-1)!. %C A001048 Number of {12, 12*, 1*2, 21, 21*}-avoiding signed permutations in the hyperoctahedral group. %C A001048 a(n) is the hook product of the shape (n, 1). - _Emeric Deutsch_, May 13 2004 %C A001048 From _Jaume Oliver Lafont_, Dec 01 2009: (Start) %C A001048 (1+(x-1)*exp(x))/x = Sum_{k >= 1} x^k/a(k). %C A001048 Setting x = 1 yields Sum_{k >= 1} 1/a(k) = 1. [Jolley eq 302] (End) %C A001048 With regard to the comment by Jaume Oliver Lafont: P(n) = 1/a(n) is a probability distribution, with all values given as unit fractions. This distribution is connected to the Irwin-Hall distribution: Consider successively drawn random numbers, uniformly distributed in [0,1]. 1/a(n) is the probability for the sum of the random numbers exceeding 1 exactly with the (n+1)-th summand. P(n) has mean e-1 and variance 3e-e^2. From this we get e as the expected number of summands. - _Manfred Boergens_, May 20 2024 %C A001048 For n >= 2, a(n) is the size of the largest conjugacy class of the symmetric group on n + 1 letters. Equivalently, the maximum entry in each row of A036039. - _Geoffrey Critzer_, May 19 2013 %C A001048 In factorial base representation (A007623) the terms are written as: 10, 11, 110, 1100, 11000, 110000, ... From a(2) = 3 = "11" onward each term begins always with two 1's, followed by n-2 zeros. - _Antti Karttunen_, Sep 24 2016 %C A001048 e is approximately a(n)/A000255(n-1) for large n. - _Dale Gerdemann_, Jul 26 2019 %C A001048 a(n) is the number of permutations of [n+1] in which all the elements of [n] are cycle-mates, that is, 1,..,n are all in the same cycle. This result is readily shown after noting that the elements of [n] can be members of a n-cycle or an (n+1)-cycle. Hence a(n)=(n-1)!+n!. See an example below. - _Dennis P. Walsh_, May 24 2020 %D A001048 L. B. W. Jolley, Summation of Series, Dover, 1961. %D A001048 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001048 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001048 T. D. Noe, Table of n, a(n) for n=1..100 %H A001048 Barry Balof and Helen Jenne, Tilings, Continued Fractions, Derangements, Scramblings, and e, Journal of Integer Sequences, Vol. 17 (2014), #14.2.7. %H A001048 E. Biondi, L. Divieti, and G. Guardabassi, Counting paths, circuits, chains and cycles in graphs: A unified approach, Canad. J. Math., Vol. 22, No. 1 (1970), pp. 22-35. %H A001048 Richard K. Guy, Letters to N. J. A. Sloane, June-August 1968. %H A001048 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 97. %H A001048 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 641. %H A001048 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 101. %H A001048 Helen K. Jenne, Proofs you can count on, Honors Thesis, Math. Dept., Whitman College, 2013. %H A001048 B. D. Josephson and J. M. Boardman, Problems Drive 1961, Eureka, The Journal of the Archimedeans, Vol. 24 (1961), p. 20; entire volume. %H A001048 T. Mansour and J. West, Avoiding 2-letter signed patterns, arXiv:math/0207204 [math.CO], 2002. %H A001048 Eric Weisstein's World of Mathematics, Uniform Sum Distribution. %H A001048 Index entries for sequences related to factorial base representation %H A001048 Index entries for sequences related to factorial numbers %F A001048 a(n) = (n+1)*(n-1)!. %F A001048 E.g.f.: x/(1-x) - log(1-x). - _Ralf Stephan_, Apr 11 2004 %F A001048 The sequence 1, 3, 8, ... has g.f. (1+x-x^2)/(1-x)^2 and a(n) = n!(n + 2 - 0^n) = n!A065475(n) (offset 0). - _Paul Barry_, May 14 2004 %F A001048 a(n) = (n+1)!/n. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003 %F A001048 Factorial expansion of 1: 1 = sum_{n > 0} 1/a(n) [Jolley eq 302]. - Claude Lenormand (claude.lenormand(AT)free.fr), Aug 24 2003 %F A001048 a(1) = 2, a(2) = 3, D-finite recurrence a(n) = (n^2 - n - 2)*a(n-2) for n >= 3. - _Jaume Oliver Lafont_, Dec 01 2009 %F A001048 a(n) = ((n+2)A052649(n) - A052649(n+1))/2. - _Gary Detlefs_, Dec 16 2009 %F A001048 G.f.: U(0) where U(k) = 1 + (k+1)/(1 - x/(x + 1/U(k+1))) ; (continued fraction, 3-step). - _Sergei N. Gladkovskii_, Sep 25 2012 %F A001048 G.f.: 2*(1+x)/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 31 2013 %F A001048 a(n) = (n-1)*a(n-1) + (n-1)!. - _Bruno Berselli_, Feb 22 2017 %F A001048 a(1)=2, a(2)=3, D-finite recurrence a(n) = (n-1)*a(n-1) + (n-2)*a(n-2). - _Dale Gerdemann_, Jul 26 2019 %F A001048 a(n) = 2*A000255(n-1) + A096654(n-2). - _Dale Gerdemann_, Jul 26 2019 %F A001048 Sum_{n>=1} (-1)^(n+1)/a(n) = 1 - 2/e (A334397). - _Amiram Eldar_, Jan 13 2021 %e A001048 For n=3, a(3) counts the 8 permutations of [4] with 1,2, and 3 all in the same cycle, namely, (1 2 3)(4), (1 3 2)(4), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 2 4 3), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020 %p A001048 seq(n!+(n-1)!,n=1..25); %t A001048 Table[n! + (n + 1)!, {n, 0, 30}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *) %t A001048 Total/@Partition[Range[0, 20]!, 2, 1] (* _Harvey P. Dale_, Nov 29 2013 *) %o A001048 (Magma) [Factorial(n)+Factorial(n+1): n in [0..30]]; // _Vincenzo Librandi_, Aug 08 2014 %o A001048 (PARI) a(n)=denominator(polcoeff((x-1)*exp(x+x*O(x^(n+1))),n+1)); \\ _Gerry Martens_, Aug 12 2015 %o A001048 (PARI) vector(30, n, (n+1)*(n-1)!) \\ _Michel Marcus_, Aug 12 2015 %Y A001048 Apart from initial terms, same as A059171. %Y A001048 Equals the square root of the first right hand column of A162990. - _Johannes W. Meijer_, Jul 21 2009 %Y A001048 From a(2)=3 onward the second topmost row of arrays A276588 and A276955. %Y A001048 Cf. sequences with formula (n + k)*n! listed in A282466, A334397. %K A001048 nonn,easy %O A001048 1,1 %A A001048 _N. J. A. Sloane_, _R. K. Guy_ %E A001048 More terms from _James A. Sellers_, Sep 19 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE