[go: up one dir, main page]

login
Search: a046913 -id:a046913
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n in which no parts are multiples of 3.
(Formerly M0316 N0116)
+10
86
1, 1, 2, 2, 4, 5, 7, 9, 13, 16, 22, 27, 36, 44, 57, 70, 89, 108, 135, 163, 202, 243, 297, 355, 431, 513, 617, 731, 874, 1031, 1225, 1439, 1701, 1991, 2341, 2731, 3197, 3717, 4333, 5022, 5834, 6741, 7803, 8991, 10375, 11923, 13716, 15723, 18038, 20628, 23603
OFFSET
0,3
COMMENTS
Case k=4, i=3 of Gordon Theorem.
Expansion of q^(-1/12)*eta(q^3)/eta(q) in powers of q. - Michael Somos, Apr 20 2004
Euler transform of period 3 sequence [1,1,0,...]. - Michael Somos, Apr 20 2004
Also the number of partitions with at most 2 parts of size 1 and all differences between parts at distance 3 are greater than 1. Example: a(6)=7 because we have [6],[5,1],[4,2],[4,1,1],[3,3],[3,2,1] and [2,2,2] (for example, [2,2,1,1] does not qualify because the difference between the first and the fourth parts is equal to 1). - Emeric Deutsch, Apr 18 2006
Also the number of partitions of n where no part appears more than twice. Example: a(6)=7 because we have [6],[5,1],[4,2],[4,1,1],[3,3],[3,2,1] and [2,2,1,1]. - Emeric Deutsch, Apr 18 2006
Also the number of partitions of n with least part either 1 or 2 and with differences of consecutive parts at most 2. Example: a(6)=7 because we have [4,2], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1] and [1,1,1,1,1,1]. - Emeric Deutsch, Apr 18 2006
Equals left border of triangle A174714. - Gary W. Adamson, Mar 27 2010
Triangle A113685 is equivalent to p(x) = p(x^2) * A000009(x); given A000041(x) = p(x). Triangle A176202 is equivalent to p(x) = p(x^3) * A000726(x). - Gary W. Adamson, Apr 11 2010
Convolution of A035382 and A035386. - Vaclav Kotesovec, Aug 23 2015
The number of partitions of n in which no parts are multiples of k equals the number of partitions of n where no part appears more than k-1 times. - Gregory L. Simay, Oct 15 2022
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 109.
L. Carlitz, Generating functions and partition problems, pp. 144-169 of A. L. Whiteman, ed., Theory of Numbers, Proc. Sympos. Pure Math., 8 (1965). Amer. Math. Soc., see p. 145.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms 0..1000 from T. D. Noe)
George E. Andrews, Partition Identities for Two-Color Partitions, Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 2021, Special Commemorative volume in honour of Srinivasa Ramanujan, 2021, 44, pp.74-80. hal-03498190. See p. 79.
Riccardo Aragona, Roberto Civino, and Norberto Gavioli, A modular idealizer chain and unrefinability of partitions with repeated parts, arXiv:2301.06347 [math.RA], 2023.
N. Chair, Partition identities from Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
Edray Herber Goins and Talitha M. Washington, On the generalized climbing stairs problem, Ars Combin. 117 (2014), 183-190. MR3243840 (Reviewed), arXiv:0909.5459 [math.CO], 2009.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 15.
Eric Weisstein's World of Mathematics, Partition function b_k.
Wikipedia, Glaisher's Theorem.
FORMULA
G.f.: 1/(Product_{k>=1} (1-x^(3*k-1))*(1-x^(3*k-2))) = Product_{k>=1} (1 + x^k + x^(2*k)) (where 1 + x + x^2 is the 3rd cyclotomic polynomial).
a(n) = A061197(n, n).
Given g.f. A(x) then B(x) = x*A(x^6)^2 satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u,v,w) = +v^2 +v*w^2 -v*u^2 +3*u^2*w^2. - Michael Somos, May 28 2006
G.f.: P(x^3)/P(x) where P(x) = Product_{k>=1} (1 - x^k). - Joerg Arndt, Jun 21 2011
a(n) ~ 2*Pi * BesselI(1, sqrt((12*n + 1)/3)*Pi/3) / (3*sqrt(12*n + 1)) ~ exp(2*Pi*sqrt(n)/3) / (6*n^(3/4)) * (1 + (Pi/36 - 9/(16*Pi))/sqrt(n) + (Pi^2/2592 - 135/(512*Pi^2) - 5/64)/n). - Vaclav Kotesovec, Aug 23 2015, extended Jan 13 2017
a(n) = (1/n)*Sum_{k=1..n} A046913(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^(3*k)))). - Ilya Gutkovskiy, Aug 15 2018
EXAMPLE
There are a(6)=7 partitions of 6 into parts != 0 (mod 3):
[ 1] [5,1],
[ 2] [4,2],
[ 3] [4,1,1],
[ 4] [2,2,2],
[ 5] [2,2,1,1],
[ 6] [2,1,1,1,1], and
[ 7] [1,1,1,1,1,1]
.
From Joerg Arndt, Dec 29 2012: (Start)
There are a(10)=22 partitions p(1)+p(2)+...+p(m)=10 such that p(k)!=p(k-2) (that is, no part appears more than twice):
[ 1] [ 3 3 2 1 1 ]
[ 2] [ 3 3 2 2 ]
[ 3] [ 4 2 2 1 1 ]
[ 4] [ 4 3 2 1 ]
[ 5] [ 4 3 3 ]
[ 6] [ 4 4 1 1 ]
[ 7] [ 4 4 2 ]
[ 8] [ 5 2 2 1 ]
[ 9] [ 5 3 1 1 ]
[10] [ 5 3 2 ]
[11] [ 5 4 1 ]
[12] [ 5 5 ]
[13] [ 6 2 1 1 ]
[14] [ 6 2 2 ]
[15] [ 6 3 1 ]
[16] [ 6 4 ]
[17] [ 7 2 1 ]
[18] [ 7 3 ]
[19] [ 8 1 1 ]
[20] [ 8 2 ]
[21] [ 9 1 ]
[22] [ 10 ]
(End)
MAPLE
g:=product(1+x^j+x^(2*j), j=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..50); # Emeric Deutsch, Apr 18 2006
# second Maple program:
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(
`if`(irem(d, 3)=0, 0, d), d=divisors(j)), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Nov 17 2017
MATHEMATICA
f[0] = 1; f[n_] := Coefficient[Expand@ Product[1 + x^k + x^(2k), {k, n}], x^n]; Table[f@n, {n, 0, 40}] (* Robert G. Wilson v, Nov 10 2006 *)
QP = QPochhammer; CoefficientList[QP[q^3]/QP[q] + O[q]^60, q] (* Jean-François Alcover, Nov 24 2015 *)
nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 02 2016 *)
Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 3], 0, 2] ], {n, 0, 50}] (* Robert Price, Jul 28 2020 *)
Table[Count[IntegerPartitions[n], _?(NoneTrue[Mod[#, 3]==0&])], {n, 0, 50}] (* Harvey P. Dale, Sep 06 2022 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(eta(x^3+x*O(x^n))/eta(x+x*O(x^n)), n))
(PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q^3)/eta(q))} \\ Altug Alkan, Mar 20 2018
(Haskell)
a000726 n = p a001651_list n where
p _ 0 = 1
p ks'@(k:ks) m | m < k = 0
| otherwise = p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Aug 23 2011
CROSSREFS
Cf. A000009 (no multiples of 2), A001935 (no of 4), A035959 (no of 5), A219601 (no of 6), A035985, A001651, A003105, A035361, A035360.
Cf. A174714. - Gary W. Adamson, Mar 27 2010
Cf. A113685, A176202. - Gary W. Adamson, Apr 11 2010
Cf. A046913.
Column k=3 of A286653.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Olivier Gérard
STATUS
approved
Sum of divisors of n that are not divisible by 4.
+10
37
1, 3, 4, 3, 6, 12, 8, 3, 13, 18, 12, 12, 14, 24, 24, 3, 18, 39, 20, 18, 32, 36, 24, 12, 31, 42, 40, 24, 30, 72, 32, 3, 48, 54, 48, 39, 38, 60, 56, 18, 42, 96, 44, 36, 78, 72, 48, 12, 57, 93, 72, 42, 54, 120, 72, 24, 80, 90, 60, 72, 62, 96, 104, 3, 84, 144, 68, 54, 96, 144, 72
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The o.g.f. is (theta_3(0,x)^4 - 1)/8, see the Hardy reference, eqs. 9.2.1, 9.2.3 and 9.2.4 on p. 133 for Sum' m*u_m. Also Hardy-Wright, p. 314. See also the Somos, Jan 25 2008 formula below. - Wolfdieter Lang, Dec 11 2016
REFERENCES
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 194.
G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island 2002, p. 133.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, Fifth edition, 1979, p. 314.
P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 31, Article 273.
C. J. Moreno and S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall, 2006.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
a(n) = (-1)^(n+1)*Sum_{d divides n} (-1)^(n/d+d)*d. Multiplicative with a(2^e) = 3, a(p^e) = (p^(e+1)-1)/(p-1) for an odd prime p. - Vladeta Jovovic, Sep 10 2002 [For a proof of the multiplicative property, see for example Moreno and Wagstaff, p. 33. - N. J. A. Sloane, Nov 09 2016]
G.f.: Sum_{k>0} x^k/(1+(-x)^k)^2, or Sum_{k>0} k*x^k/(1+(-x)^k). - Vladeta Jovovic, Dec 16 2002
Expansion of (1 - phi(q)^4) / 8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jan 25 2008
Equals inverse Mobius transform of A190621. - Gary W. Adamson, Jul 03 2008
A000118(n) = 8*a(n) for all n>0.
Dirichlet g.f.: (1 - 4^(1-s)) * zeta(s) * zeta(s-1). - Michael Somos, Oct 21 2015
L.g.f.: log(Product_{k>=1} (1 - x^(4*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
From Peter Bala, Dec 19 2021: (Start)
Logarithmic g.f.: Sum_{n >= 1} a(n)*x^n/n = Sum_{n >= 1} x^n*(1 + x^n + x^(2*n))/( n*(1 - x^(4*n)) )
G.f.: Sum_{n >= 1} x^n*(x^(6*n) + 2*x^(5*n) + 3*x^(4*n) + 3*x^(2*n) + 2*x^n + 1)/(1 - x^(4*n))^2. (End)
Sum_{k=1..n} a(k) ~ (Pi^2/16) * n^2. - Amiram Eldar, Oct 04 2022
EXAMPLE
G.f. = q + 3*q^2 + 4*q^3 + 3*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 3*q^8 + 13*q^9 + ...
MAPLE
A046897 := proc(n) if n mod 4 = 0 then numtheory[sigma](n)-4*numtheory[sigma](n/4) ; else numtheory[sigma](n) ; end if; end proc: # R. J. Mathar, Mar 23 2011
MATHEMATICA
a[n_] := Sum[ Boole[ !Divisible[d, 4]]*d, {d, Divisors[n]}]; Table[ a[n], {n, 1, 71}] (* Jean-François Alcover, Dec 12 2011 *)
DivisorSum[#1, # &, Mod[#, 4] != 0 &] & /@ Range[71] (* Jayanta Basu, Jun 30 2013 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q]^4 - 1) / 8, {q, 0, n}]; (* Michael Somos, Dec 30 2014 *)
f[2, e_] := 3; f[p_, e_] := (p^(e+1)-1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, d, if(d%4, d)))};
(Magma) A := Basis( ModularForms( Gamma0(4), 2), 72); B<q> := (A[1] - 1)/8 + A[2]; B; /* Michael Somos, Dec 30 2014 */
(Haskell)
a046897 1 = 1
a046897 n = product $ zipWith
(\p e -> if p == 2 then 3 else div (p ^ (e + 1) - 1) (p - 1))
(a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, Aug 12 2015
CROSSREFS
Cf. A000203, A000118, A051731, A069733, A027748, A124010, A190621, A046913 (not divis. by 3), A116073 (not divis. by 5).
KEYWORD
nonn,mult
STATUS
approved
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 9.
+10
14
1, 2, 1, 3, 2, 2, 2, 4, 1, 4, 2, 3, 2, 4, 2, 5, 2, 2, 2, 6, 2, 4, 2, 4, 3, 4, 1, 6, 2, 4, 2, 6, 2, 4, 4, 3, 2, 4, 2, 8, 2, 4, 2, 6, 2, 4, 2, 5, 3, 6, 2, 6, 2, 2, 4, 8, 2, 4, 2, 6, 2, 4, 2, 7, 4, 4, 2, 6, 2, 8, 2, 4, 2, 4, 3, 6, 4, 4, 2, 10, 1
OFFSET
1,2
COMMENTS
Number of divisors of n not congruent to 0 mod 3. - Vladeta Jovovic, Oct 26 2001
a(n) is the number of factors (over Q) of the polynomial x^(2n) + x^n + 1 . a(n) = d(3n) - d(n) where d() is the divisor function. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 28 2003
Equals Mobius transform of A011655. - Gary W. Adamson, Apr 24 2009
LINKS
FORMULA
Multiplicative with a(3^e)=1 and a(p^e)=e+1 for p<>3.
G.f.: Sum_{k>0} x^k*(1+x^k)/(1-x^(3*k)). - Vladeta Jovovic, Dec 16 2002
a(n) = A001817(n) + A001822(n). [Reinhard Zumkeller, Nov 26 2011]
a(n) = tau(3*n) - tau(n). - Ridouane Oudra, Sep 05 2020
From Amiram Eldar, Nov 27 2022: (Start)
Dirichlet g.f.: zeta(s)^2 * (1 - 1/3^s).
Sum_{k=1..n} a(k) ~ (2*n*log(n) + (4*gamma + log(3) - 2)*n)/3, where gamma is Euler's constant (A001620). (End)
a(n) = Sum_{d|n} Kronecker(9, d). - Amiram Eldar, Nov 20 2023
a(n) = A000005(A038502(n)). - Ridouane Oudra, Sep 30 2024
MAPLE
for n from 1 to 500 do a := ifactors(n):s := 1:for k from 1 to nops(a[2]) do p := a[2][k][1]:e := a[2][k][2]: if p=3 then b := 1:else b := e+1:fi:s := s*b:od:printf(`%d, `, s); od:
# alternative
A035191 := proc(n)
A001817(n)+A001822(n) ;
end proc:
[seq(A035191(n), n=1..100)] ; # R. J. Mathar, Sep 25 2017
MATHEMATICA
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[9, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
f[3, e_] := 1; f[p_, e_] := e+1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 26 2020 *)
PROG
(PARI) my(m=9); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(9, d)); \\ Amiram Eldar, Nov 20 2023
(Haskell)
a035191 n = a001817 n + a001822 n -- Reinhard Zumkeller, Nov 26 2011
(Magma) [NumberOfDivisors(n)/Valuation(3*n, 3): n in [1..100]]; // Vincenzo Librandi, Jun 03 2019
KEYWORD
nonn,mult,easy
STATUS
approved
Expansion of f(-x) / f(-x^3) in powers of x where f() is a Ramanujan theta function.
+10
13
1, -1, -1, 1, -1, 0, 2, -1, -1, 3, -2, -1, 4, -3, -2, 5, -4, -2, 8, -6, -4, 10, -7, -4, 14, -10, -6, 18, -13, -7, 24, -17, -10, 30, -21, -12, 40, -28, -17, 49, -35, -19, 63, -44, -26, 78, -55, -31, 98, -69, -40, 120, -84, -47, 150, -105, -61, 182, -127, -71
OFFSET
0,7
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/12) eta(q) / eta(q^3) in powers of q.
Euler transform of period 3 sequence [ -1, -1, 0, ...].
Given g.f. A(x) then B(q) = A(q^6)^2 / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 4*v^2 + (u^2 - v) * (w^2 + v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (432 t)) = 3^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A000726.
G.f.: Product_{k>0} (1 - x^(3*k-1)) * (1 - x^(3*k-2)).
a(3*n) = A035943(n). a(3*n + 1) = - A035941(n). a(3*n + 2) = - A035940(n).
Convolution inverse of A000726.
Convolution square is A112157. Convolution 4th power is A058095. - Michael Somos, Oct 08 2015
a(2*n) = A263050(n). a(2*n + 1) = - A263051(n). - Michael Somos, Oct 08 2015
G.f.: (Product_{k>0} (1 + x^k + x^(2*k)))^-1. - Michael Somos, Oct 08 2015
a(n) = -(1/n)*Sum_{k=1..n} A046913(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
EXAMPLE
G.f. = 1 - x - x^2 + x^3 - x^4 + 2*x^6 - x^7 - x^8 + 3*x^9 - 2*x^10 - x^11 + ...
G.f. = 1/q - q^11 - q^23 + q^35 - q^47 + 2*q^71 - q^83 - q^95 + 3*q^107 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] / QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Oct 08 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^3] QPochhammer[ x^2, x^3], {x, 0, n}]; (* Michael Somos, Oct 08 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^3 + A), n))};
KEYWORD
sign
AUTHOR
Michael Somos, Jan 26 2008
STATUS
approved
Theta series of direct sum of 2 copies of hexagonal lattice.
+10
11
1, 12, 36, 12, 84, 72, 36, 96, 180, 12, 216, 144, 84, 168, 288, 72, 372, 216, 36, 240, 504, 96, 432, 288, 180, 372, 504, 12, 672, 360, 216, 384, 756, 144, 648, 576, 84, 456, 720, 168, 1080, 504, 288, 528, 1008, 72, 864, 576, 372, 684, 1116, 216, 1176, 648, 36
OFFSET
0,2
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Convolution square of A004016.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Denoted by E_{2,3}^{i\infinity}(\tau) in Kaneko and Sakai 2012 on page 7. - Michael Somos, Dec 27 2014
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 460, Entry 3(i).
J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1999, p. 110.
LINKS
Masanobu Kaneko and Yuichi Sakai, The Ramanujan-Serre Differential Operators and certain Elliptic Curves, arXiv:1201.1685 [math.NT], 2012.
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
Gabriele Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2.
FORMULA
Expansion of (theta_3(z)*theta_3(3z)+theta_2(z)*theta_2(3z))^2.
Expansion of a(q)^2 in powers of q where a() is a cubic AGM theta function.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 + 9*v^2 + 16*w^2 - 6*u*v + 4*u*w - 24*v*w. - Michael Somos, Jul 19 2004
G.f.: 1 + 12* Sum_{k>0} x^k / (1 - x^k)^2 - 36* Sum_{k>0} x^(3*k) / (1 - x^(3*k))^2. - Michael Somos, Apr 15 2007
a(n) = 12 * A046913(n) unless n=0.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/3. - Amiram Eldar, Jan 21 2024
EXAMPLE
G.f. = 1 + 12*q + 36*q^2 + 12*q^3 + 84*q^4 + 72*q^5 + 36*q^6 + 96*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ ((QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / QPochhammer[ q^3])^2, {q, 0, n}]; (* Michael Somos, May 26 2014 *)
a[ n_] := If[ n < 1, Boole[ n == 0], 12 Sum[ If[ Mod[ d, 3] > 0, d, 0], {d, Divisors @ n }]]; (* Michael Somos, May 26 2014 *)
PROG
(PARI) {a(n) = if( n<1, n==0, 12 * (sigma(3*n) - 3*sigma(n)))}; /* Michael Somos, Jul 19 2004 */
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, 6 * x^k / (1 + x^k + x^(2*k)), 1 + x * O(x^n))^2, n))}; /* Michael Somos, Jul 19 2004 */
(Sage) ModularForms( Gamma0(3), 2, prec=70).0; # Michael Somos, Jun 12 2014
(Magma) Basis( ModularForms( Gamma0(3), 2), 70)[1]; /* Michael Somos, Jun 12 2014 */
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
Sum of divisors d of n such that n/d is not congruent to 0 mod 3.
+10
11
1, 3, 3, 7, 6, 9, 8, 15, 9, 18, 12, 21, 14, 24, 18, 31, 18, 27, 20, 42, 24, 36, 24, 45, 31, 42, 27, 56, 30, 54, 32, 63, 36, 54, 48, 63, 38, 60, 42, 90, 42, 72, 44, 84, 54, 72, 48, 93, 57, 93, 54, 98, 54, 81, 72, 120, 60, 90, 60, 126, 62, 96, 72, 127, 84, 108, 68, 126, 72, 144
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>0} x^k*(1+x^k)^2*(1+x^(2*k))/(1-x^(3*k))^2.
a(n) = (A000203(3*n)-A000203(n))/3. - Vladeta Jovovic, Dec 22 2003
G.f.: Sum_{k>=1} k*x^k*(1 + x^k)/(1 - x^(3*k)). - Ilya Gutkovskiy, Sep 13 2019
From R. J. Mathar, May 25 2020: (Start)
a(n) = A326399(n) + A326400(n).
a(n) = A000203(n) - A000203(n/3), where A000203(.) = 0 for non-integer arguments. (End)
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(3^e) = 3^e and a(p^e) = (p^(e+1)-1)/(p-1) if p != 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 2*Pi^2/27 = 0.731081... (A346933). (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/3^s). - Amiram Eldar, Dec 30 2022
MATHEMATICA
f[p_, e_] := If[p == 3, 3^e, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
PROG
(PARI) for(n=1, 70, d=divisors(n); s=0; for(j=1, matsize(d)[2], if((n/d[j])%3>0, s=s+d[j])); print1(s, ", "))
(PARI) a(n)=sumdiv(n, d, if((n/d)%3, 1, 0)*d)
CROSSREFS
Cf. A002131 (k=2), this sequence (k=3), A285895 (k=4), A285896 (k=5).
KEYWORD
mult,easy,nonn
AUTHOR
Vladeta Jovovic, Dec 18 2002
EXTENSIONS
Extended by Klaus Brockhaus and Benoit Cloitre, Dec 20 2002
STATUS
approved
Sum of the divisors of n which are not divisible by 9.
+10
11
1, 3, 4, 7, 6, 12, 8, 15, 4, 18, 12, 28, 14, 24, 24, 31, 18, 12, 20, 42, 32, 36, 24, 60, 31, 42, 4, 56, 30, 72, 32, 63, 48, 54, 48, 28, 38, 60, 56, 90, 42, 96, 44, 84, 24, 72, 48, 124, 57, 93, 72, 98, 54, 12, 72, 120, 80, 90, 60, 168, 62, 96, 32, 127, 84, 144, 68, 126, 96
OFFSET
1,2
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 475 Entry 7(i).
LINKS
J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012).
FORMULA
Expansion of (eta(q^3)^10 / (eta(q) eta(q^9))^3 - 1) / 3 in powers of q.
a(n) is multiplicative with a(3^e) = 4 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: Sum_{k>0} k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)).
L.g.f.: log(Product_{k>=1} (1 - x^(9*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (2*Pi^2/27) * n^2. - Amiram Eldar, Oct 04 2022
EXAMPLE
q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 15*q^8 + 4*q^9 + ...
MATHEMATICA
With[{c=9Range[20]}, Table[Total[Complement[Divisors[i], c]], {i, 80}]] (* Harvey P. Dale, Dec 19 2010 *)
Drop[CoefficientList[Series[Sum[k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)) , {k, 1, 100}], {x, 0, 100}], x], 1] (* Indranil Ghosh, Mar 25 2017 *)
f[p_, e_] := If[p == 3, 4, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
PROG
(PARI) {a(n) = if( n<1, 0, sigma(n) - if( n%9==0, 9 * sigma(n/9)))}
(PARI) {a(n) = polcoeff( sum( k=1, n, k * (x^k /(1 - x^k) - 9 * x^(9*k) /(1 - x^(9*k))), x * O(x^n)), n)}
(PARI) q='q+O('q^66); Vec( (eta(q^3)^10/(eta(q)*eta(q^9))^3 - 1) /3 ) \\ Joerg Arndt, Mar 25 2017
(Python)
from sympy import divisors
print([sum(i for i in divisors(n) if i%9) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017
CROSSREFS
A096726(n) = 3*a(n) if n>0.
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Feb 19 2006
STATUS
approved
Sum of divisors of n congruent to 1 or 5 mod 6.
+10
9
1, 1, 1, 1, 6, 1, 8, 1, 1, 6, 12, 1, 14, 8, 6, 1, 18, 1, 20, 6, 8, 12, 24, 1, 31, 14, 1, 8, 30, 6, 32, 1, 12, 18, 48, 1, 38, 20, 14, 6, 42, 8, 44, 12, 6, 24, 48, 1, 57, 31, 18, 14, 54, 1, 72, 8, 20, 30, 60, 6, 62, 32, 8, 1, 84, 12, 68, 18, 24, 48, 72, 1, 74, 38, 31, 20, 96, 14, 80, 6
OFFSET
1,5
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of (1 + a(x)^2 - 2*a(x^2)^2) / 12 in powers of x where a() is a cubic AGM function.
a(n) is multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
Equals the logarithmic derivative of A003105, where A003105(n) = number of partitions of n into parts 6*n+1 or 6*n-1. - Paul D. Hanna, Feb 17 2013
L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} S(n,x)*x^n/n where S(n,x) = Sum_{d|n} d*(1-x^d)^(n/d). - Paul D. Hanna, Feb 17 2013
a(n) = A284098(n) + A284104(n). - Seiichi Manyama, Mar 24 2017
G.f.: Sum_{n >= 1} x^n*(x^(10*n) + 5*x^(6*n) + 5*x^(4*n) + 1)/(1 - x^(6*n))^2. - Peter Bala, Dec 19 2021
From Amiram Eldar, Dec 30 2022: (Start)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2/2^s)*(1-3/3^s).
Sum_{k=1..n} a(k) ~ c*n^2, where c = Pi^2/36 = 0.274155... (A353908). (End)
EXAMPLE
G.f.: x + x^2 + x^3 + x^4 + 6*x^5 + x^6 + 8*x^7 + x^8 + x^9 + 6*x^10 + 12*x^11 +...
L.g.f.: L(x) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + x^6/6 + 8*x^7/7 + x^8/8 +...
where exp(L(x)) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 +...+ A003105(n)*x^n +...
MATHEMATICA
Table[Total[Select[Divisors[n], MemberQ[{1, 5}, Mod[#, 6]]&]], {n, 0, 100}] (* Harvey P. Dale, Feb 24 2011 *)
a[ n_] := If[ n < 1, 0, DivisorSum[n, If[ 1 == GCD[#, 6], #, 0] &]]; (* Michael Somos, Jun 27 2017 *)
a[ n_] := If[n < 1, 0, Times @@ (Which[# < 5, 1, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger[n])]; (* Michael Somos, Jun 27 2017 *)
PROG
(PARI) {a(n) = sumdiv( n, d, d * (1 == gcd(d, 6) ))};
(PARI) {a(n) = direuler( p=2, n, 1 / (1 - X) / (1 - (p>3) * p * X)) [n]};
(PARI) a(n)=sigma(n/2^valuation(n, 2)/3^valuation(n, 3)) \\ Charles R Greathouse IV, Dec 07 2011
(PARI)
{S(n, x)=sumdiv(n, d, d*(1-x^d)^(n/d))}
{a(n)=n*polcoeff(sum(k=1, n, S(k, x)*x^k/k)+x*O(x^n), n)}
for(n=1, 80, print1(a(n), ", "))
/* Paul D. Hanna, Feb 17 2013 */
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Feb 12 2011
STATUS
approved
Sum of the divisors of n that are not divisible by 6.
+10
9
1, 3, 4, 7, 6, 6, 8, 15, 13, 18, 12, 10, 14, 24, 24, 31, 18, 15, 20, 42, 32, 36, 24, 18, 31, 42, 40, 56, 30, 36, 32, 63, 48, 54, 48, 19, 38, 60, 56, 90, 42, 48, 44, 84, 78, 72, 48, 34, 57, 93, 72, 98, 54, 42, 72, 120, 80, 90, 60, 60, 62, 96, 104, 127, 84, 72, 68
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 6*k*x^(6*k)/(1 - x^(6*k)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) ~ (5*Pi^2/72) * n^2. - Amiram Eldar, Oct 04 2022
Dirichlet g.f. (1-6^(1-s))*zeta(s-1)*zeta(s), but not multiplicative. - R. J. Mathar, May 17 2023
MATHEMATICA
Table[Sum[Boole[Mod[d, 6]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 25 2017 *)
Table[Total[Select[Divisors[n], Mod[#, 6]!=0&]], {n, 100}] (* Harvey P. Dale, Feb 25 2020 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, ((d%6)>0)*d), ", ")) \\ Indranil Ghosh, Mar 25 2017
(Python)
from sympy import divisors
print([sum([i for i in divisors(n) if i%6]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017
CROSSREFS
Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), this sequence (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), A284344 (k=10).
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 25 2017
STATUS
approved
Sum of the divisors of n that are not divisible by 8.
+10
9
1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 40, 56, 30, 72, 32, 7, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 120, 72, 56, 80, 90, 60, 168, 62, 96, 104, 7, 84, 144, 68
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 8*k*x^(8*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Mar 25 2017
Multiplicative with a(2^e) = 7 if e>=3, and a(p^e) = (p^(e + 1) - 1)/(p - 1) otherwise. - Amiram Eldar, Sep 17 2020
Sum_{k=1..n} a(k) ~ (7*Pi^2/96) * n^2. - Amiram Eldar, Oct 04 2022
MATHEMATICA
Table[Sum[Boole[Mod[d, 8]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 25 2017 *)
Table[Total[DeleteCases[Divisors[n], _?(Divisible[#, 8]&)]], {n, 120}] (* Harvey P. Dale, Mar 18 2018 *)
f[p_, e_] := If[p == 2 && e >= 3, 7, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
PROG
(PARI) for(n=1, 100, print1(sumdiv(n, d, ((d%8)>0)*d), ", ")) \\ Indranil Ghosh, Mar 25 2017
(Python)
from sympy import divisors
print([sum([i for i in divisors(n) if i%8]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017
CROSSREFS
Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), this sequence (k=8), A116607 (k=9), A284344 (k=10).
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Mar 25 2017
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 20 2018
STATUS
approved

Search completed in 0.013 seconds