[go: up one dir, main page]

login
A046913
Sum of divisors of n not congruent to 0 mod 3.
23
1, 3, 1, 7, 6, 3, 8, 15, 1, 18, 12, 7, 14, 24, 6, 31, 18, 3, 20, 42, 8, 36, 24, 15, 31, 42, 1, 56, 30, 18, 32, 63, 12, 54, 48, 7, 38, 60, 14, 90, 42, 24, 44, 84, 6, 72, 48, 31, 57, 93, 18, 98, 54, 3, 72, 120, 20, 90, 60, 42, 62, 96, 8, 127, 84, 36, 68, 126
OFFSET
1,2
LINKS
Hershel M. Farkas, On an arithmetical function, Ramanujan J., Vol. 8, No. 3 (2004), pp. 309-315.
Pavel Guerzhoy and Ka Lun Wong, Farkas' identities with quartic characters, The Ramanujan Journal (2020), preprint, arXiv:1905.06506 [math.NT], 2019.
FORMULA
Multiplicative with a(3^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) for p<>3. - Vladeta Jovovic, Sep 11 2002
G.f.: Sum_{k>0} x^k*(1+2*x^k+2*x^(3*k)+x^(4*k))/(1-x^(3*k))^2. - Vladeta Jovovic, Dec 18 2002
a(n) = A000203(3n)-3*A000203(n). - Labos Elemer, Aug 14 2003
Inverse Mobius transform of A091684. - Gary W. Adamson, Jul 03 2008
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/3^(s-1)). - R. J. Mathar, Feb 10 2011
G.f. A(x) satisfies: 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w)= u^2 + 9 * v^2 + 16 * w^2 - 6 * u*v + 4 * u*w - 24 * v*w - v + w. - Michael Somos, Jul 19 2004
L.g.f.: log(Product_{k>=1} (1 - x^(3*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
a(n) = A002324(n) + 3*Sum_{j=1, n-1} A002324(j)*A002324(n-j). See Farkas and Guerzhoy links. - Michel Marcus, Jun 01 2019
a(3*n) = a(n). - David A. Corneth, Jun 01 2019
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 18. - Vaclav Kotesovec, Sep 17 2020
EXAMPLE
Divisors of 12 are 1 2 3 4 6 12 and discarding 3 6 and 12 we get a(12) = 1 + 2 + 4 = 7.
x + 3*x^2 + x^3 + 7*x^4 + 6*x^5 + 3*x^6 + 8*x^7 + 15*x^8 + x^9 + 18*x^10 + ...
MATHEMATICA
Table[DivisorSigma[1, 3*w]-3*DivisorSigma[1, w], {w, 1, 256}]
DivisorSum[#1, # &, Mod[#, 3] != 0 &] & /@ Range[68] (* Jayanta Basu, Jun 30 2013 *)
f[p_, e_] := If[p == 3, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
PROG
(PARI) {a(n) = if( n<1, 0, sigma(3*n) - 3 * sigma(n))} /* Michael Somos, Jul 19 2004 */
(PARI) a(n) = sigma(n \ 3^valuation(n, 3)) \\ David A. Corneth, Jun 01 2019
(Magma) [SumOfDivisors(3*k)-3*SumOfDivisors(k):k in [1..70]]; // Marius A. Burtea, Jun 01 2019
CROSSREFS
KEYWORD
nonn,mult
STATUS
approved