[go: up one dir, main page]

login
Search: a008594 -id:a008594
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n*(3*n + 23)/2.
+10
2
0, 13, 29, 48, 70, 95, 123, 154, 188, 225, 265, 308, 354, 403, 455, 510, 568, 629, 693, 760, 830, 903, 979, 1058, 1140, 1225, 1313, 1404, 1498, 1595, 1695, 1798, 1904, 2013, 2125, 2240, 2358, 2479, 2603, 2730, 2860, 2993, 3129, 3268, 3410, 3555, 3703, 3854, 4008
FORMULA
a(n) = A000326(n) + A008594(n).
Hypotenuses of reciprocal Pythagorean triangles: number of solutions to 1/(12n)^2 = 1/b^2 + 1/c^2 [with b >= c > 0]; also number of values of A020885 (with repetitions) which divide n.
+10
1
1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 1, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5
COMMENTS
Primitive reciprocal Pythagorean triangles 1/a^2 = 1/b^2 + 1/c^2 have a=fg, b=ef, c=eg where e^2 = f^2 + g^2; i.e., e,f,g represent the sides of primitive Pythagorean triangles. But the product of the two legs of primitive Pythagorean triangles are multiples of 12 and so the reciprocal of hypotenuses of reciprocal Pythagorean triangles are always multiples of 12 (A008594).
Number of tiles added at iteration n when successively, layer by layer, building a symmetric patch of a rhombille tiling around a central star of six rhombs.
+10
1
6, 6, 12, 18, 24, 24, 36, 30, 48, 36, 60, 42, 72, 48, 84, 54, 96, 60, 108, 66, 120, 72, 132, 78, 144, 84, 156, 90, 168, 96, 180, 102, 192, 108, 204, 114, 216, 120, 228, 126, 240, 132, 252, 138, 264, 144, 276, 150, 288, 156, 300, 162, 312, 168, 324, 174, 336
FORMULA
a(2*n+1) = A008594(n).
CROSSREFS
The number of cells added in the n-th generation of the following procedure: start by coloring any triangle on the snub square tiling, then repeatedly color every cell that shares a vertex with a colored cell.
+10
1
1, 9, 21, 35, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192, 204, 216, 228, 240, 252, 264, 276, 288, 300, 312, 324, 336, 348, 360, 372, 384, 396, 408, 420, 432, 444, 456, 468, 480, 492, 504, 516, 528, 540, 552, 564, 576, 588, 600, 612, 624, 636
CROSSREFS
Cf. A008594.
Multiples of 12 whose sum of digits is 12.
+10
1
48, 84, 156, 192, 228, 264, 336, 372, 408, 444, 480, 516, 552, 624, 660, 732, 804, 840, 912, 1056, 1092, 1128, 1164, 1236, 1272, 1308, 1344, 1380, 1416, 1452, 1524, 1560, 1632, 1704, 1740, 1812, 1920, 2028, 2064, 2136, 2172, 2208, 2244, 2280, 2316, 2352, 2424
CROSSREFS
Intersection of A235151 (sum of digits = 12) and A008594 (multiples of 12).
Cf. A008594 (multiples of 12), A235151 (sum of digits = 12).
Number and its reversal are both multiples of 12.
+10
0
0, 48, 84, 216, 252, 276, 408, 420, 444, 468, 480, 612, 636, 672, 696, 804, 828, 840, 864, 888, 2100, 2112, 2124, 2136, 2148, 2160, 2172, 2184, 2196, 2304, 2316, 2328, 2340, 2352, 2364, 2376, 2388, 2508, 2520, 2532, 2544, 2556, 2568, 2580, 2592, 2700, 2712
CROSSREFS
Molecular topological indices of the complete tripartite graphs K_{n,n,n}.
+10
0
24, 240, 864, 2112, 4200, 7344, 11760, 17664, 25272, 34800, 46464, 60480, 77064, 96432, 118800, 144384, 173400, 206064, 242592, 283200, 328104, 377520, 431664, 490752, 555000, 624624, 699840, 780864, 867912, 961200
FORMULA
a(n) = 6*A046092(n) + (A008594(n+1) * A140676(n-1)). (End)
a(n) = 252 * n.
+10
0
0, 252, 504, 756, 1008, 1260, 1512, 1764, 2016, 2268, 2520, 2772, 3024, 3276, 3528, 3780, 4032, 4284, 4536, 4788, 5040, 5292, 5544, 5796, 6048, 6300, 6552, 6804, 7056, 7308, 7560, 7812, 8064, 8316, 8568, 8820, 9072, 9324, 9576, 9828, 10080, 10332, 10584, 10836, 11088, 11340
FORMULA
a(n) = 7*A044102(n) = 9*A135628(n) = 12*A008603(n) = 14*A008600(n) = 18*A008596(n) = 21*A008594(n) = 28*A008591(n) = 36*A008589(n) = 252*A001477(n). (End)
Consider the sums of the numbers < n that share the same greatest common divisor with n. Sequence lists numbers that have only one of those sums equal to n.
+10
0
3, 4, 8, 9, 15, 16, 20, 21, 27, 28, 32, 33, 39, 40, 44, 45, 51, 52, 56, 57, 63, 64, 68, 69, 75, 76, 80, 81, 87, 88, 92, 93, 99, 100, 104, 105, 111, 112, 116, 117, 123, 124, 128, 129, 135, 136, 140, 141, 147, 148, 152, 153, 159, 160, 164, 165, 171, 172, 176, 177
COMMENTS
Numbers with no sum equal to n are listed in A108118, with two sums equal to n are listed in A017593 and with three sums equal to n in A008594.
CROSSREFS
Triangle read by rows: T(n,k) is the coefficient of (1+x)^k in the ZZ polynomial of the hexagonal graphene flake O(3,4,n).
+10
0
1, 12, 18, 41, 24, 120, 200, 120, 24, 11, 36, 306, 996, 1446, 984, 303, 42, 21, 48, 576, 2800, 6525, 7848, 4957, 1644, 274, 22, 11, 60, 930, 6020, 19365, 33600, 32487, 17694, 5336, 858, 71, 21, 72, 1368, 11064, 45435, 103200, 134806, 102912, 45567, 11358, 1510, 86, 1
CROSSREFS
Column k=1 is A008594.

Search completed in 0.025 seconds