[go: up one dir, main page]

login
A070194
List the phi(n) numbers from 1 to n-1 which are relatively prime to n; sequence gives size of maximal gap.
4
1, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 3, 2, 1, 4, 1, 4, 3, 4, 1, 4, 2, 4, 2, 4, 1, 6, 1, 2, 3, 4, 3, 4, 1, 4, 3, 4, 1, 6, 1, 4, 3, 4, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 4, 1, 6, 1, 4, 3, 2, 3, 6, 1, 4, 3, 6, 1, 4, 1, 4, 3, 4, 3, 6, 1, 4, 2, 4, 1, 6, 3, 4, 3, 4, 1, 6, 3, 4, 3, 4, 3, 4, 1, 4, 3, 4, 1, 6, 1, 4, 5, 4, 1
OFFSET
3,2
COMMENTS
Maximal gap in reduced residue system mod n.
It is an unsolved problem to determine the rate of growth of this sequence.
REFERENCES
H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 200.
FORMULA
a(n) = max(A048669(n),2) for all n>2. Indeed A048669 is obtained when going up to n+1 instead of only n-1 (because after n+1, the gaps among numbers coprime to n repeat). Since n-1 and n+1 are both coprime to n, this means that A048669(n)=2 whenever a(n)=1, but in all other cases, there is equality. - M. F. Hasler, Sep 08 2012
EXAMPLE
For n = 10 the reduced residues are 1, 3, 7, 9; the maximal gap is a(10) = 7-3 = 4.
MATHEMATICA
f[n_] := Block[{a = Select[ Table[i, {i, n - 1}], GCD[ #, n] == 1 & ], b = {}, k = 1, l = EulerPhi[n]}, While[k < l, b = Append[b, Abs[a[[k]] - a[[k + 1]]]]; k++ ]; Max[b]]; Table[ f[n], {n, 3, 100}]
PROG
(PARI) A070194(n)={my(L=1, m=1); for(k=2, n-1, gcd(k, n)>1&next; L+m<k&m=k-L; L=k); m} \\ - M. F. Hasler, Sep 08 2012
(Haskell)
a070194 n = maximum $ zipWith (-) (tail ts) ts where ts = a038566_row n
-- Reinhard Zumkeller, Oct 01 2012
CROSSREFS
Cf. A000010.
Cf. A038566.
Sequence in context: A091891 A258127 A181982 * A323300 A349128 A366450
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, May 13 2002
EXTENSIONS
More terms from Robert G. Wilson v and John W. Layman, May 13 2002
STATUS
approved