[go: up one dir, main page]

login
A007179
Dual pairs of integrals arising from reflection coefficients.
(Formerly M3284)
10
0, 1, 1, 4, 6, 16, 28, 64, 120, 256, 496, 1024, 2016, 4096, 8128, 16384, 32640, 65536, 130816, 262144, 523776, 1048576, 2096128, 4194304, 8386560, 16777216, 33550336, 67108864, 134209536, 268435456, 536854528, 1073741824, 2147450880, 4294967296, 8589869056
OFFSET
0,4
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Kyu-Hwan Lee, Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016.
A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 2014, 87, 1260-1264 | doi:10.1246/bcsj.20140204. See Tables 1 and 2 (and text). - N. J. A. Sloane, Mar 26 2015
FORMULA
From Paul Barry, Apr 28 2004: (Start)
Binomial transform is (A000244(n)+A001333(n))/2.
G.f.: x*(1-x)/((1-2*x)*(1-2*x^2)).
a(n) = 2*a(n-1)+2*a(n-2)-4*a(n-3).
a(n) = 2^n/2-2^(n/2)*(1+(-1)^n)/4. (End)
G.f.: (1+x*Q(0))*x/(1-x), where Q(k)= 1 - 1/(2^k - 2*x*2^(2*k)/(2*x*2^k - 1/(1 + 1/(2*2^k - 8*x*2^(2*k)/(4*x*2^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
a(n) = A011782(n+2) - A077957(n) - Gus Wiseman, Feb 26 2022
EXAMPLE
From Gus Wiseman, Feb 26 2022: (Start)
Also the number of integer compositions of n with at least one odd part. For example, the a(1) = 1 through a(5) = 16 compositions are:
(1) (1,1) (3) (1,3) (5)
(1,2) (3,1) (1,4)
(2,1) (1,1,2) (2,3)
(1,1,1) (1,2,1) (3,2)
(2,1,1) (4,1)
(1,1,1,1) (1,1,3)
(1,2,2)
(1,3,1)
(2,1,2)
(2,2,1)
(3,1,1)
(1,1,1,2)
(1,1,2,1)
(1,2,1,1)
(2,1,1,1)
(1,1,1,1,1)
(End)
MAPLE
f := n-> if n mod 2 = 0 then 2^(n-1)-2^((n-2)/2) else 2^(n-1); fi;
MATHEMATICA
LinearRecurrence[{2, 2, -4}, {0, 1, 1}, 30] (* Harvey P. Dale, Nov 30 2015 *)
Table[2^(n-1)-If[EvenQ[n], 2^(n/2-1), 0], {n, 0, 15}] (* Gus Wiseman, Feb 26 2022 *)
PROG
(Magma) [Floor(2^n/2-2^(n/2)*(1+(-1)^n)/4): n in [0..40]]; // Vincenzo Librandi, Aug 20 2011
(PARI) Vec(x*(1-x)/((1-2*x)*(1-2*x^2)) + O(x^50)) \\ Michel Marcus, Jan 28 2016
CROSSREFS
Column k=2 of A309748.
Odd bisection is A000302.
Even bisection is A006516 = 2^(n-1)*(2^n - 1).
The complement is counted by A077957, internal version A027383.
The internal case is A274230, even bisection A134057.
A000045(n-1) counts compositions without odd parts, non-singleton A077896.
A003242 counts Carlitz compositions.
A011782 counts compositions.
A034871, A097805, and A345197 count compositions by alternating sum.
A052952 (or A074331) counts non-singleton compositions without even parts.
Sequence in context: A059736 A261682 A102731 * A112576 A174804 A081487
KEYWORD
nonn,easy
STATUS
approved