proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
Cf. A369298.
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+k-1,k) * binomial(3*n-3*k-1,n-3*k).
a(n) = Sum_{k=0..floor(n/3)}
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 * (1-x^3)^2 ). See A369298.
1, 2, 10, 62, 394, 2552, 16822, 112310, 756874, 5137676, 35076360, 240606082, 1656906550, 11447855850, 79319081054, 550925792312, 3834743187594, 26742188401900, 186802789016908, 1306827910585782, 9154542088193544, 64206944261628146, 450823141806229290
(PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));
allocated for Seiichi ManyamaCoefficient of x^n in the expansion of 1/( (1-x)^2 * (1-x^3)^2 )^n.
1, 2, 10, 62, 394, 2552, 16822, 112310, 756874, 5137676, 35076360, 240606082, 1656906550, 11447855850, 79319081054, 550925792312
0,2
allocated
nonn
Seiichi Manyama, Feb 13 2024
approved
editing
allocated for Seiichi Manyama
allocated
approved