[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370275
Coefficient of x^n in the expansion of 1/( (1-x)^2 * (1-x^3)^2 )^n.
1
1, 2, 10, 62, 394, 2552, 16822, 112310, 756874, 5137676, 35076360, 240606082, 1656906550, 11447855850, 79319081054, 550925792312, 3834743187594, 26742188401900, 186802789016908, 1306827910585782, 9154542088193544, 64206944261628146, 450823141806229290
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(2*n+k-1,k) * binomial(3*n-3*k-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^2 * (1-x^3)^2 ). See A369298.
PROG
(PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));
CROSSREFS
Cf. A369298.
Sequence in context: A155626 A092165 A370249 * A304443 A370626 A243034
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved