proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
[n: n in [0..400250] | IsRepresentablePoly(n, {10, 26})];
proposed
editing
editing
proposed
0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 18, 20, 25, 26, 32, 36, 37, 40, 45, 49, 50, 52, 64, 65, 67, 72, 74, 79, 80, 81, 83, 90, 98, 100, 104, 117, 121, 125, 128, 130, 134, 144, 148, 158, 160, 162, 163, 166, 169, 180, 185, 191, 196, 197, 199, 200, 208, 225, 227, 234, 242, 245, 250, 256, 260, 268, 288, 289, 293, 296, 307, 311, 316, 317, 320, 324, 325, 326, 332, 333, 335, 338, 360, 361, 370, 382, 392, 394, 395, 397, 398, 400
nonn,more,changed
proposed
editing
editing
proposed
A positive iinteger integer n is in this sequence if and only if all prime factors of n congruent to {3, 7, 11, 17, 19, 21, 23, 27, 29, 31, 33, 41, 43, 47, 51, 53, 57, 59, 61, 63, 69, 71, 73, 77, 87, 89, 97, 99, 101, 103, 107, 109, 111, 113, 119, 127, 131, 133, 137, 139, 141, 147, 149, 151, 153, 157, 161, 167, 171, 173, 177, 179, 181, 183, 189, 193, 201, 207, 211, 217, 219, 223, 229, 233, 237, 239, 241, 243, 249, 251, 257, 259, 261, 263, 269, 271, 277, 279, 281, 283, 287, 291, 297, 301, 303, 309, 313, 319, 327, 331, 337, 339, 341, 343, 347, 349, 353, 359, 363, 367, 369, 371, 373, 379, 381, 383, 387, 389, 393, 401, 407, 409, 411, 413, 417, 419, 421, 423, 431, 433, 443, 447, 449, 451, 457, 459, 461, 463, 467, 469, 473, 477, 479, 487, 489, 491, 493, 497, 499, 501, 503, 509, 513, 517} mod 520 occur with even exponents.
proposed
editing
editing
proposed
0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 18, 20, 25, 26, 32, 36, 37, 40, 45, 49, 50, 52, 64, 65, 67, 72, 74, 79, 80, 81, 83, 90, 98, 100, 104, 117, 121, 125, 128, 130, 134, 144, 148, 158, 160, 162, 163, 166, 169, 180, 185, 191, 196, 197, 199, 200, 208, 225, 227, 234, 242, 245, 250, 256, 260, 268, 288, 289, 293, 296, 307, 311, 316, 317, 320, 324, 325, 326, 332, 333, 335, 338, 360, 361, 370, 382, 392, 394, 395, 397, 398, 400
The number of terms n up to x is asymptotic to c*x/log(x)^(3/4) for an explicitly computable constant c.
A positive iinteger n is in this sequence if and only if all prime factors of n congruent to {3, 7, 11, 17, 19, 21, 23, 27, 29, 31, 33, 41, 43, 47, 51, 53, 57, 59, 61, 63, 69, 71, 73, 77, 87, 89, 97, 99, 101, 103, 107, 109, 111, 113, 119, 127, 131, 133, 137, 139, 141, 147, 149, 151, 153, 157, 161, 167, 171, 173, 177, 179, 181, 183, 189, 193, 201, 207, 211, 217, 219, 223, 229, 233, 237, 239, 241, 243, 249, 251, 257, 259, 261, 263, 269, 271, 277, 279, 281, 283, 287, 291, 297, 301, 303, 309, 313, 319, 327, 331, 337, 339, 341, 343, 347, 349, 353, 359, 363, 367, 369, 371, 373, 379, 381, 383, 387, 389, 393, 401, 407, 409, 411, 413, 417, 419, 421, 423, 431, 433, 443, 447, 449, 451, 457, 459, 461, 463, 467, 469, 473, 477, 479, 487, 489, 491, 493, 497, 499, 501, 503, 509, 513, 517} mod 520 occur with even exponents.
74=2*37. Using the formula above, 74 is in this sequence.
849=3*283. Using the formula above, 849 is not in this sequence, although 849=1849-1000=43^2-10*100=43^2-10*10^2 and 849==329 (mod 520).
[n: n in [0..169400] | IsRepresentablePoly(n, {10, 26})];
proposed
editing
editing
proposed