[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378294 revision #17

A378294
Nonnegative norms of ideals in Q(sqrt(10), sqrt(26)).
0
0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 18, 20, 25, 26, 32, 36, 37, 40, 45, 49, 50, 52, 64, 65, 67, 72, 74, 79, 80, 81, 83, 90, 98, 100, 104, 117, 121, 125, 128, 130, 134, 144, 148, 158, 160, 162, 163, 166, 169, 180, 185, 191, 196, 197, 199, 200, 208, 225, 227, 234, 242, 245, 250
OFFSET
0,3
COMMENTS
The number of terms n up to x is asymptotic to c*x/log(x)^(3/4) for an explicitly computable constant c.
FORMULA
A positive integer n is in this sequence if and only if all prime factors of n congruent to {3, 7, 11, 17, 19, 21, 23, 27, 29, 31, 33, 41, 43, 47, 51, 53, 57, 59, 61, 63, 69, 71, 73, 77, 87, 89, 97, 99, 101, 103, 107, 109, 111, 113, 119, 127, 131, 133, 137, 139, 141, 147, 149, 151, 153, 157, 161, 167, 171, 173, 177, 179, 181, 183, 189, 193, 201, 207, 211, 217, 219, 223, 229, 233, 237, 239, 241, 243, 249, 251, 257, 259, 261, 263, 269, 271, 277, 279, 281, 283, 287, 291, 297, 301, 303, 309, 313, 319, 327, 331, 337, 339, 341, 343, 347, 349, 353, 359, 363, 367, 369, 371, 373, 379, 381, 383, 387, 389, 393, 401, 407, 409, 411, 413, 417, 419, 421, 423, 431, 433, 443, 447, 449, 451, 457, 459, 461, 463, 467, 469, 473, 477, 479, 487, 489, 491, 493, 497, 499, 501, 503, 509, 513, 517} mod 520 occur with even exponents.
EXAMPLE
74=2*37. Using the formula above, 74 is in this sequence.
849=3*283. Using the formula above, 849 is not in this sequence, although 849=1849-1000=43^2-10*100=43^2-10*10^2 and 849==329 (mod 520).
PROG
(Magma)
IsRepresentablePrime:=func<p, D | D eq 0 select false else IsSquare(D) select true else KroneckerSymbol(FundamentalDiscriminant(D), p) in [0, 1]>;
IsRepresentableMulti:=func<p, S | forall{k: k in Subsets(S) | IsRepresentablePrime(p, &*k)}>;
IsRepresentablePoly:=func<n, S | n eq 0 or (Min(S) gt 0 or n gt 0) and forall{t: t in Factorization(n) | t[2] mod 2 eq 0 or IsRepresentableMulti(t[1], S)}>;
[n: n in [0..250] | IsRepresentablePoly(n, {10, 26})];
CROSSREFS
Cf. A378295.
Sequence in context: A245226 A034026 A125022 * A362295 A069011 A353386
KEYWORD
nonn,new
AUTHOR
Jovan Radenkovicc, Nov 22 2024
STATUS
approved