[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A366231 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Expansion of g.f. A(x) satisfying 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(2*n+1) * Product_{k=1..n} (1 + x^k).
(history; published version)
#10 by OEIS Server at Mon Nov 27 04:09:17 EST 2023
LINKS

Paul D. Hanna, <a href="/A366231/b366231_1.txt">Table of n, a(n) for n = 0..270</a>

#9 by Peter Luschny at Mon Nov 27 04:09:17 EST 2023
STATUS

reviewed

approved

Discussion
Mon Nov 27
04:09
OEIS Server: Installed first b-file as b366231.txt.
#8 by Joerg Arndt at Mon Nov 27 03:15:22 EST 2023
STATUS

proposed

reviewed

#7 by Paul D. Hanna at Sun Nov 26 19:15:23 EST 2023
STATUS

editing

proposed

#6 by Paul D. Hanna at Sun Nov 26 19:15:21 EST 2023
EXAMPLE

1 = A(x) /(1+x*A(x)^2) - x^2*A(x)^3/((1+x*A(x)^2)*(1+x^3*A(x)^2) ) + x^4*A(x)^5/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)) - x^6*A(x)^7/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)*(1+x^7*A(x)^2)) + x^8*A(x)^9/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)*(1+x^7*A(x)^2)*(1+x^9*A(x)^2)) -+ ...

STATUS

proposed

editing

#5 by Paul D. Hanna at Sun Nov 26 19:09:30 EST 2023
STATUS

editing

proposed

#4 by Paul D. Hanna at Sun Nov 26 19:09:23 EST 2023
LINKS

Paul D. Hanna, <a href="/A366231/b366231_1.txt">Table of n, a(n) for n = 0..270</a>

#3 by Paul D. Hanna at Sun Nov 26 18:14:35 EST 2023
NAME

Expansion of g.f. A(x) satisfying 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(2*n+1) * Product_{k=1..n} (1 + x^k).

EXAMPLE

1 = A(x) - x*A(x)^23*(1+x) + x^2*A(x)^35*(1+x)*(1+x^2) - x^3*A(x)^47*(1+x)*(1+x^2)*(1+x^3) + x^4*A(x)^59*(1+x)*(1+x^2)*(1+x^3)*(1+x^4) - x^5*A(x)^611*(1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5) +- ...

#2 by Paul D. Hanna at Sun Nov 26 18:11:33 EST 2023
NAME

allocated for Paul D. Hanna

Expansion of g.f. A(x) satisfying 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(n+1) * Product_{k=1..n} (1 + x^k).

DATA

1, 1, 3, 10, 37, 146, 604, 2582, 11319, 50607, 229875, 1057856, 4921427, 23108430, 109370632, 521229470, 2499113258, 12046661239, 58346721541, 283805084926, 1385781218558, 6790201444942, 33377058382130, 164540328122236, 813301767625587, 4029903322301757, 20013362007322192

OFFSET

0,3

FORMULA

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.

(1) 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(2*n+1) * Product_{k=1..n} (1 + x^k).

(2) 1 = Sum_{n>=0} (-1)^n * x^(2*n) * A(x)^(2*n+1) / Product_{k=1..n+1} (1 + x^(2*k-1)*A(x)^2).

EXAMPLE

G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 146*x^5 + 604*x^6 + 2582*x^7 + 11319*x^8 + 50607*x^9 + 229875*x^10 + 1057856*x^11 + 4921427*x^12 + ...

where

1 = A(x) - x*A(x)^2*(1+x) + x^2*A(x)^3*(1+x)*(1+x^2) - x^3*A(x)^4*(1+x)*(1+x^2)*(1+x^3) + x^4*A(x)^5*(1+x)*(1+x^2)*(1+x^3)*(1+x^4) - x^5*A(x)^6*(1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5) +- ...

also, by a q-series identity, we have

1 = A(x) - x^2*A(x)^3/(1+x*A(x)^2) + x^4*A(x)^5/((1+x*A(x)^2)*(1+x^3*A(x)^2)) - x^6*A(x)^7/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)) + x^8*A(x)^9/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)*(1+x^7*A(x)^2)) -+ ...

PROG

(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);

A[#A] = polcoeff(1 - sum(m=0, #A, (-1)^m * x^m * Ser(A)^(2*m+1) * prod(k=1, m, 1 + x^k) ), #A-1) ); A[n+1]}

for(n=0, 40, print1(a(n), ", "))

KEYWORD

allocated

nonn

AUTHOR

Paul D. Hanna, Nov 26 2023

STATUS

approved

editing

#1 by Paul D. Hanna at Thu Oct 05 05:47:32 EDT 2023
NAME

allocated for Paul D. Hanna

KEYWORD

allocated

STATUS

approved