Paul D. Hanna, <a href="/A366231/b366231_1.txt">Table of n, a(n) for n = 0..270</a>
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
Paul D. Hanna, <a href="/A366231/b366231_1.txt">Table of n, a(n) for n = 0..270</a>
reviewed
approved
proposed
reviewed
editing
proposed
1 = A(x) /(1+x*A(x)^2) - x^2*A(x)^3/((1+x*A(x)^2)*(1+x^3*A(x)^2) ) + x^4*A(x)^5/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2
proposed
editing
editing
proposed
Paul D. Hanna, <a href="/A366231/b366231_1.txt">Table of n, a(n) for n = 0..270</a>
Expansion of g.f. A(x) satisfying 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(2*n+1) * Product_{k=1..n} (1 + x^k).
1 = A(x) - x*A(x)^23*(1+x) + x^2*A(x)^35*(1+x)*(1+x^2) - x^3*A(x)^47*(1+x)*(1+x^2)*(1+x^3) + x^4*A(x)^59*(1+x)*(1+x^2)*(1+x^3)*(1+x^4) - x^5*A(x)^611*(1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5) +- ...
allocated for Paul D. Hanna
Expansion of g.f. A(x) satisfying 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(n+1) * Product_{k=1..n} (1 + x^k).
1, 1, 3, 10, 37, 146, 604, 2582, 11319, 50607, 229875, 1057856, 4921427, 23108430, 109370632, 521229470, 2499113258, 12046661239, 58346721541, 283805084926, 1385781218558, 6790201444942, 33377058382130, 164540328122236, 813301767625587, 4029903322301757, 20013362007322192
0,3
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(2*n+1) * Product_{k=1..n} (1 + x^k).
(2) 1 = Sum_{n>=0} (-1)^n * x^(2*n) * A(x)^(2*n+1) / Product_{k=1..n+1} (1 + x^(2*k-1)*A(x)^2).
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 146*x^5 + 604*x^6 + 2582*x^7 + 11319*x^8 + 50607*x^9 + 229875*x^10 + 1057856*x^11 + 4921427*x^12 + ...
where
1 = A(x) - x*A(x)^2*(1+x) + x^2*A(x)^3*(1+x)*(1+x^2) - x^3*A(x)^4*(1+x)*(1+x^2)*(1+x^3) + x^4*A(x)^5*(1+x)*(1+x^2)*(1+x^3)*(1+x^4) - x^5*A(x)^6*(1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5) +- ...
also, by a q-series identity, we have
1 = A(x) - x^2*A(x)^3/(1+x*A(x)^2) + x^4*A(x)^5/((1+x*A(x)^2)*(1+x^3*A(x)^2)) - x^6*A(x)^7/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)) + x^8*A(x)^9/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)*(1+x^7*A(x)^2)) -+ ...
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(1 - sum(m=0, #A, (-1)^m * x^m * Ser(A)^(2*m+1) * prod(k=1, m, 1 + x^k) ), #A-1) ); A[n+1]}
for(n=0, 40, print1(a(n), ", "))
allocated
nonn
Paul D. Hanna, Nov 26 2023
approved
editing
allocated for Paul D. Hanna
allocated
approved