[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366231
Expansion of g.f. A(x) satisfying 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(2*n+1) * Product_{k=1..n} (1 + x^k).
1
1, 1, 3, 10, 37, 146, 604, 2582, 11319, 50607, 229875, 1057856, 4921427, 23108430, 109370632, 521229470, 2499113258, 12046661239, 58346721541, 283805084926, 1385781218558, 6790201444942, 33377058382130, 164540328122236, 813301767625587, 4029903322301757, 20013362007322192
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(2*n+1) * Product_{k=1..n} (1 + x^k).
(2) 1 = Sum_{n>=0} (-1)^n * x^(2*n) * A(x)^(2*n+1) / Product_{k=1..n+1} (1 + x^(2*k-1)*A(x)^2).
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 37*x^4 + 146*x^5 + 604*x^6 + 2582*x^7 + 11319*x^8 + 50607*x^9 + 229875*x^10 + 1057856*x^11 + 4921427*x^12 + ...
where
1 = A(x) - x*A(x)^3*(1+x) + x^2*A(x)^5*(1+x)*(1+x^2) - x^3*A(x)^7*(1+x)*(1+x^2)*(1+x^3) + x^4*A(x)^9*(1+x)*(1+x^2)*(1+x^3)*(1+x^4) - x^5*A(x)^11*(1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5) +- ...
also, by a q-series identity, we have
1 = A(x)/(1+x*A(x)^2) - x^2*A(x)^3/((1+x*A(x)^2)*(1+x^3*A(x)^2)) + x^4*A(x)^5/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)) - x^6*A(x)^7/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)*(1+x^7*A(x)^2)) + x^8*A(x)^9/((1+x*A(x)^2)*(1+x^3*A(x)^2)*(1+x^5*A(x)^2)*(1+x^7*A(x)^2)*(1+x^9*A(x)^2)) -+ ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(1 - sum(m=0, #A, (-1)^m * x^m * Ser(A)^(2*m+1) * prod(k=1, m, 1 + x^k) ), #A-1) ); A[n+1]}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Sequence in context: A151055 A151056 A109081 * A046632 A151057 A063029
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 26 2023
STATUS
approved