[go: up one dir, main page]

login
Revision History for A320922 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Heinz numbers of graphical partitions.
(history; published version)
#5 by Susanna Cuyler at Wed Oct 24 19:21:26 EDT 2018
STATUS

proposed

approved

#4 by Gus Wiseman at Wed Oct 24 11:36:32 EDT 2018
STATUS

editing

proposed

#3 by Gus Wiseman at Wed Oct 24 11:08:14 EDT 2018
#2 by Gus Wiseman at Wed Oct 24 10:51:19 EDT 2018
NAME

allocated for Gus WisemanHeinz numbers of graphical partitions.

DATA

1, 4, 12, 16, 27, 36, 40, 48, 64, 81, 90, 108, 112, 120, 144, 160, 192, 225, 243, 252, 256, 270, 300, 324, 336, 352, 360, 400, 432, 448, 480, 567, 576, 625, 630, 640, 675, 729, 750, 756, 768, 792, 810, 832, 840, 900, 972, 1000, 1008, 1024, 1056, 1080, 1120

OFFSET

1,2

COMMENTS

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

An integer partition is graphical if it comprises the vertex-degrees of some simple graph.

EXAMPLE

The sequence of all graphical partitions begins: (), (11), (211), (1111), (222), (2211), (3111), (21111), (111111), (2222), (3221), (22211), (41111), (32111), (221111), (311111), (2111111), (3322), (22222), (42211).

MATHEMATICA

prptns[m_]:=Union[Sort/@If[Length[m]==0, {{}}, Join@@Table[Prepend[#, m[[ipr]]]&/@prptns[Delete[m, List/@ipr]], {ipr, Select[Prepend[{#}, 1]&/@Select[Range[2, Length[m]], m[[#]]>m[[#-1]]&], UnsameQ@@m[[#]]&]}]]];

Select[Range[1000], Select[prptns[Flatten[MapIndexed[Table[#2, {#1}]&, If[#==1, {}, Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]]]], UnsameQ@@#&]!={}&]

KEYWORD

allocated

nonn

AUTHOR

Gus Wiseman, Oct 24 2018

STATUS

approved

editing

#1 by Gus Wiseman at Wed Oct 24 10:51:19 EDT 2018
NAME

allocated for Gus Wiseman

KEYWORD

allocated

STATUS

approved