OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is graphical if it comprises the vertex-degrees of some simple graph.
EXAMPLE
The sequence of all graphical partitions begins: (), (11), (211), (1111), (222), (2211), (3111), (21111), (111111), (2222), (3221), (22211), (41111), (32111), (221111), (311111), (2111111), (3322), (22222), (42211).
MATHEMATICA
prptns[m_]:=Union[Sort/@If[Length[m]==0, {{}}, Join@@Table[Prepend[#, m[[ipr]]]&/@prptns[Delete[m, List/@ipr]], {ipr, Select[Prepend[{#}, 1]&/@Select[Range[2, Length[m]], m[[#]]>m[[#-1]]&], UnsameQ@@m[[#]]&]}]]];
Select[Range[1000], Select[prptns[Flatten[MapIndexed[Table[#2, {#1}]&, If[#==1, {}, Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]]]], UnsameQ@@#&]!={}&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 24 2018
STATUS
editing