editing
approved
editing
approved
proposed
approved
editing
proposed
Robert Israel, <a href="/A309763/b309763.txt">Table of n, a(n) for n = 1..10000</a>
N:= 10^5: # for terms <= N
V:= Vector(N, datatype=integer[4]):
for a from 1 while a^4 <= N do
for b from 1 to a while a^4+b^4 <= N do
for c from 1 to b while a^4 + b^4+ c^4 <= N do
for d from 1 to c do
v:= a^4+b^4+c^4+d^4;
if v > N then break fi;
V[v]:= V[v]+1
od od od od:
select(i -> V[i]>1, [$1..N]); # Robert Israel, Oct 07 2019
approved
editing
proposed
approved
editing
proposed
allocated for Ilya GutkovskiyNumbers that are the sum of 4 nonzero 4th powers in more than one way.
259, 2674, 2689, 2754, 2929, 3298, 3969, 4144, 4209, 5074, 6579, 6594, 6659, 6769, 6834, 7203, 7874, 8194, 8979, 9154, 9234, 10113, 10674, 11298, 12673, 12913, 13139, 14674, 14689, 14754, 16563, 16578, 16643, 16818, 17187, 17234, 17299, 17314, 17858, 18963, 19699
1,1
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number</a>
259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4, so 259 is in the sequence.
Select[Range@20000, Length@Select[PowersRepresentations[#, 4, 4], ! MemberQ[#, 0] &] > 1 &]
allocated
nonn
Ilya Gutkovskiy, Aug 15 2019
approved
editing
allocated for Ilya Gutkovskiy
recycled
allocated
recycled
approved