[go: up one dir, main page]

login
A344241
Numbers that are the sum of four fourth powers in three or more ways.
8
16578, 43234, 49329, 53218, 54978, 57154, 93393, 106354, 107649, 108754, 138258, 151219, 160434, 168963, 173539, 177699, 178738, 181138, 183603, 185298, 195378, 195859, 196418, 197154, 197778, 201683, 202419, 209763, 211249, 216594, 217138, 223074, 234274, 235554, 235569, 236674, 237249, 237699
OFFSET
1,1
LINKS
David Consiglio, Jr., Table of n, a(n) for n = 1..20000
EXAMPLE
49329 = 2^4 + 2^4 + 12^4 + 13^4
= 4^4 + 8^4 + 9^4 + 14^4
= 6^4 + 9^4 + 12^4 + 12^4
so 49329 is a term of this sequence.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 50)]
for pos in cwr(power_terms, 4):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 3])
for x in range(len(rets)):
print(rets[x])
KEYWORD
nonn
AUTHOR
STATUS
approved