reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Number of twice-factorizations of n of where the first factorization is strict and the latter factorizations are constant, i.e., type (P,Q,R).
allocated for Gus WisemanNumber of twice-factorizations of n of type (P,Q,R).
1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 8, 2, 2, 4, 4, 1, 5, 1, 9, 2, 2, 2, 9, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 13, 2, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 11, 1, 2, 4, 16, 2, 5, 1, 4, 2, 5, 1, 18, 1, 2, 4, 4, 2, 5, 1, 13, 5, 2, 1, 11, 2
1,4
a(n) is the number of ways to choose a perfect divisor of each factor in a strict factorization of n.
Dirichlet g.f.: Product_{n > 1}(1 + A089723(n)/n^s).
The a(24) = 8 twice-factorizations: (2)*(3)*(2*2), (2)*(3)*(4), (2)*(12), (3)*(2*2*2), (3)*(8), (2*2)*(6), (4)*(6), (24).
sfs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[sfs[n/d], Min@@#>d&]], {d, Rest[Divisors[n]]}]];
Table[Sum[Product[DivisorSigma[0, GCD@@FactorInteger[d][[All, 2]]], {d, fac}], {fac, sfs[n]}], {n, 100}]
allocated
nonn
Gus Wiseman, Dec 05 2017
approved
editing
allocated for Gus Wiseman
allocated
approved