[go: up one dir, main page]

login
A296118
Number of ways to choose a factorization of each factor in a strict factorization of n.
7
1, 1, 1, 2, 1, 3, 1, 5, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 5, 8, 1, 12, 1, 18, 3, 3, 3, 23, 1, 3, 3, 20, 1, 12, 1, 8, 8, 3, 1, 45, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 38, 1, 3, 8, 34, 3, 12, 1, 8, 3, 12, 1, 66, 1, 3, 8, 8, 3, 12, 1, 45, 8, 3
OFFSET
1,4
FORMULA
Dirichlet g.f.: Product_{n > 1}(1 + A001055(n)/n^s).
EXAMPLE
The a(12) = 8 twice-factorizations are (2)*(2*3), (2)*(6), (3)*(2*2), (3)*(4), (2*2*3), (2*6), (3*4), (12).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Sum[Times@@(Length[facs[#]]&/@f), {f, Select[facs[n], UnsameQ@@#&]}], {n, 100}]
PROG
(PARI)
A001055(n, m=n) = if(1==n, 1, sumdiv(n, d, if((d>1)&&(d<=m), A001055(n/d, d))));
A296118(n, m=n) = ((n<=m)*A001055(n) + sumdiv(n, d, if((d>1)&&(d<=m)&&(d<n), A001055(d)*A296118(n/d, d-1)))); \\ Antti Karttunen, Oct 08 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 05 2017
STATUS
approved