[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A294766 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Number of permutations of [n] avoiding {4312, 1432, 1234}.
(history; published version)
#11 by Alois P. Heinz at Sun Mar 21 21:16:17 EDT 2021
STATUS

proposed

approved

#10 by Jon E. Schoenfield at Sun Mar 21 19:09:36 EDT 2021
STATUS

editing

proposed

#9 by Jon E. Schoenfield at Sun Mar 21 19:09:35 EDT 2021
NAME

Permutations Number of permutations of [n] avoiding {4312, 1432, 1234}.

STATUS

approved

editing

#8 by Bruno Berselli at Thu Nov 09 11:39:37 EST 2017
STATUS

reviewed

approved

#7 by Michel Marcus at Thu Nov 09 11:38:53 EST 2017
STATUS

proposed

reviewed

#6 by Colin Barker at Thu Nov 09 07:25:51 EST 2017
STATUS

editing

proposed

#5 by Colin Barker at Thu Nov 09 07:24:56 EST 2017
LINKS

Colin Barker, <a href="/A294766/b294766.txt">Table of n, a(n) for n = 0..1000</a>

<a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (13,-74,242,-501,681,-608,344,-112,16).

FORMULA

G.f.: (1 - 12*x + 63*x^2 - 188*x^3 + 350*x^4 - 419*x^5 + 317*x^6 - 138*x^7 + 26*x^8 - x^9) / ((1 - x)^5*(1 - 2*x)^4).

From Colin Barker, Nov 09 2017: (Start)

a(n) = (1/96)*(-6*(-16+2^n) + (-136+123*2^n)*n - 4*(11+3*2^(1+n))*n^2 + (-8+3*2^n)*n^3 - 4*n^4).

a(n) = 13*a(n-1) - 74*a(n-2) + 242*a(n-3) - 501*a(n-4) + 681*a(n-5) - 608*a(n-6) + 344*a(n-7) - 112*a(n-8) + 16*a(n-9) for n>9.

(End)

PROG

(PARI) Vec((1 - 12*x + 63*x^2 - 188*x^3 + 350*x^4 - 419*x^5 + 317*x^6 - 138*x^7 + 26*x^8 - x^9) / ((1 - x)^5*(1 - 2*x)^4) + O(x^30)) \\ Colin Barker, Nov 09 2017

STATUS

approved

editing

#4 by R. J. Mathar at Wed Nov 08 09:21:07 EST 2017
STATUS

editing

approved

#3 by R. J. Mathar at Wed Nov 08 09:20:58 EST 2017
DATA

1, 1, 2, 6, 21, 74, 248, 784, 2355, 6785, 18897, 51177, 135358, 350788, 893038, 2237998, 5530485, 13496371, 32566359, 77785039, 184083080, 432004206, 1006097772, 2326777196, 5346673751, 12213795349, 27749494413, 62729986469, 141146690370, 316216935240, 705582559642, 1568468327962, 3474360060073, 7670811537703, 16883516381043, 37052682795883, 81093277441260, 177021371988946, 385481904658424

#2 by R. J. Mathar at Wed Nov 08 09:20:43 EST 2017
NAME

allocated for R. J. Mathar

Permutations of [n] avoiding {4312, 1432, 1234}.

DATA

1, 1, 2, 6, 21, 74, 248, 784, 2355, 6785, 18897, 51177, 135358, 350788, 893038, 2237998, 5530485, 13496371, 32566359, 77785039, 184083080, 432004206, 1006097772, 2326777196, 5346673751, 12213795349, 27749494413, 62729986469, 141146690370, 316216935240, 705582559642, 1568468327962, 3474360060073, 7670811537703, 16883516381043, 37052682795883, 81093277441260, 177021371988946, 385481904658424

OFFSET

0,3

LINKS

D. Callan, T. Mansour, <a href="http://arxiv.org/abs/1705.00933">Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns</a>, arXiv:1705.00933 [math.CO] (2017), Table 2 No 119

MAPLE

(-350*x^4-63*x^2+419*x^5-26*x^8+138*x^7-317*x^6+188*x^3+x^9-1+12*x)/((2*x-1)^4*(x-1)^5) ;

taylor(%, x=0, 40) ;

gfun[seriestolist](%) ;

KEYWORD

allocated

nonn,easy

AUTHOR

R. J. Mathar, Nov 08 2017

STATUS

approved

editing