proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
Permutations Number of permutations of [n] avoiding {4312, 1432, 1234}.
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
Colin Barker, <a href="/A294766/b294766.txt">Table of n, a(n) for n = 0..1000</a>
<a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (13,-74,242,-501,681,-608,344,-112,16).
G.f.: (1 - 12*x + 63*x^2 - 188*x^3 + 350*x^4 - 419*x^5 + 317*x^6 - 138*x^7 + 26*x^8 - x^9) / ((1 - x)^5*(1 - 2*x)^4).
From Colin Barker, Nov 09 2017: (Start)
a(n) = (1/96)*(-6*(-16+2^n) + (-136+123*2^n)*n - 4*(11+3*2^(1+n))*n^2 + (-8+3*2^n)*n^3 - 4*n^4).
a(n) = 13*a(n-1) - 74*a(n-2) + 242*a(n-3) - 501*a(n-4) + 681*a(n-5) - 608*a(n-6) + 344*a(n-7) - 112*a(n-8) + 16*a(n-9) for n>9.
(End)
(PARI) Vec((1 - 12*x + 63*x^2 - 188*x^3 + 350*x^4 - 419*x^5 + 317*x^6 - 138*x^7 + 26*x^8 - x^9) / ((1 - x)^5*(1 - 2*x)^4) + O(x^30)) \\ Colin Barker, Nov 09 2017
approved
editing
editing
approved
1, 1, 2, 6, 21, 74, 248, 784, 2355, 6785, 18897, 51177, 135358, 350788, 893038, 2237998, 5530485, 13496371, 32566359, 77785039, 184083080, 432004206, 1006097772, 2326777196, 5346673751, 12213795349, 27749494413, 62729986469, 141146690370, 316216935240, 705582559642, 1568468327962, 3474360060073, 7670811537703, 16883516381043, 37052682795883, 81093277441260, 177021371988946, 385481904658424
allocated for R. J. Mathar
Permutations of [n] avoiding {4312, 1432, 1234}.
1, 1, 2, 6, 21, 74, 248, 784, 2355, 6785, 18897, 51177, 135358, 350788, 893038, 2237998, 5530485, 13496371, 32566359, 77785039, 184083080, 432004206, 1006097772, 2326777196, 5346673751, 12213795349, 27749494413, 62729986469, 141146690370, 316216935240, 705582559642, 1568468327962, 3474360060073, 7670811537703, 16883516381043, 37052682795883, 81093277441260, 177021371988946, 385481904658424
0,3
D. Callan, T. Mansour, <a href="http://arxiv.org/abs/1705.00933">Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns</a>, arXiv:1705.00933 [math.CO] (2017), Table 2 No 119
(-350*x^4-63*x^2+419*x^5-26*x^8+138*x^7-317*x^6+188*x^3+x^9-1+12*x)/((2*x-1)^4*(x-1)^5) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
allocated
nonn,easy
R. J. Mathar, Nov 08 2017
approved
editing