[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294766 revision #6

A294766
Permutations of [n] avoiding {4312, 1432, 1234}.
1
1, 1, 2, 6, 21, 74, 248, 784, 2355, 6785, 18897, 51177, 135358, 350788, 893038, 2237998, 5530485, 13496371, 32566359, 77785039, 184083080, 432004206, 1006097772, 2326777196, 5346673751, 12213795349, 27749494413, 62729986469, 141146690370, 316216935240, 705582559642
OFFSET
0,3
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 119
Index entries for linear recurrences with constant coefficients, signature (13,-74,242,-501,681,-608,344,-112,16).
FORMULA
G.f.: (1 - 12*x + 63*x^2 - 188*x^3 + 350*x^4 - 419*x^5 + 317*x^6 - 138*x^7 + 26*x^8 - x^9) / ((1 - x)^5*(1 - 2*x)^4).
From Colin Barker, Nov 09 2017: (Start)
a(n) = (1/96)*(-6*(-16+2^n) + (-136+123*2^n)*n - 4*(11+3*2^(1+n))*n^2 + (-8+3*2^n)*n^3 - 4*n^4).
a(n) = 13*a(n-1) - 74*a(n-2) + 242*a(n-3) - 501*a(n-4) + 681*a(n-5) - 608*a(n-6) + 344*a(n-7) - 112*a(n-8) + 16*a(n-9) for n>9.
(End)
MAPLE
(-350*x^4-63*x^2+419*x^5-26*x^8+138*x^7-317*x^6+188*x^3+x^9-1+12*x)/((2*x-1)^4*(x-1)^5) ;
taylor(%, x=0, 40) ;
gfun[seriestolist](%) ;
PROG
(PARI) Vec((1 - 12*x + 63*x^2 - 188*x^3 + 350*x^4 - 419*x^5 + 317*x^6 - 138*x^7 + 26*x^8 - x^9) / ((1 - x)^5*(1 - 2*x)^4) + O(x^30)) \\ Colin Barker, Nov 09 2017
CROSSREFS
Sequence in context: A116745 A116831 A294698 * A116752 A294767 A116827
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 08 2017
STATUS
proposed