proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]];
a[n_] := Coefficient[b[2n, 0, 0], z, n];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A282869 *)
approved
editing
editing
approved
From Vaclav Kotesovec, Mar 26 2018: (Start)
Recurrence: 3*n*(3*n + 1)*(3*n + 2)*(3*n^3 - 11*n^2 + 10*n - 3)*a(n) = - 24*(2*n - 1)*(6*n^3 - 1)*a(n-1) + 64*(n-1)*(2*n - 3)*(2*n - 1)*(3*n^3 - 2*n^2 - 3*n - 1)*a(n-2).
a(n) ~ ((3+2*sqrt(3)) - (-1)^n*(3-2*sqrt(3))) * 2^(4*n + 1) / (sqrt(Pi*n) * 3^(3*n/2 + 2)). (End)
approved
editing
editing
approved
Alois P. Heinz, <a href="/A283799/b283799.txt">Table of n, a(n) for n = 0..1000</a>
allocated for Alois P. Heinz
Number of dispersed Dyck prefixes of length 2n and height n.
1, 2, 5, 12, 36, 90, 286, 728, 2380, 6120, 20349, 52668, 177100, 460460, 1560780, 4071600, 13884156, 36312408, 124403620, 326023280, 1121099408, 2942885946, 10150595910, 26681566392, 92263734836, 242799302200, 841392966470, 2216352204360, 7694644696200
0,2
Recursion: see Maple program.
a(n) = A282869(2n,n).
a:= proc(n) option remember; `if`(n<3, 1+n^2, ((512*(2*n-5))
*(2519*n-1279)*(n-2)*(2*n-3)*a(n-3) +(192*(2*n-3))
*(1710*n^3-443*n^2-4990*n+2483)*a(n-2) -(24*(22671*n^4
-124866*n^3+216436*n^2-129032*n+24526))*a(n-1))
/ ((3*n+2)*(27*n+9)*(855*n-1504)*n))
end:
seq(a(n), n=0..30);
Cf. A282869.
allocated
nonn
Alois P. Heinz, Mar 16 2017
approved
editing
allocated for Alois P. Heinz
allocated
approved