[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A283799 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Number of dispersed Dyck prefixes of length 2n and height n.
(history; published version)
#10 by N. J. A. Sloane at Mon Dec 21 07:16:37 EST 2020
STATUS

proposed

approved

#9 by Jean-François Alcover at Mon Dec 21 04:09:45 EST 2020
STATUS

editing

proposed

#8 by Jean-François Alcover at Mon Dec 21 04:09:41 EST 2020
MATHEMATICA

b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]];

a[n_] := Coefficient[b[2n, 0, 0], z, n];

a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A282869 *)

STATUS

approved

editing

#7 by Vaclav Kotesovec at Mon Mar 26 10:43:08 EDT 2018
STATUS

editing

approved

#6 by Vaclav Kotesovec at Mon Mar 26 10:42:37 EDT 2018
FORMULA

From Vaclav Kotesovec, Mar 26 2018: (Start)

Recurrence: 3*n*(3*n + 1)*(3*n + 2)*(3*n^3 - 11*n^2 + 10*n - 3)*a(n) = - 24*(2*n - 1)*(6*n^3 - 1)*a(n-1) + 64*(n-1)*(2*n - 3)*(2*n - 1)*(3*n^3 - 2*n^2 - 3*n - 1)*a(n-2).

a(n) ~ ((3+2*sqrt(3)) - (-1)^n*(3-2*sqrt(3))) * 2^(4*n + 1) / (sqrt(Pi*n) * 3^(3*n/2 + 2)). (End)

STATUS

approved

editing

#5 by Alois P. Heinz at Thu Mar 16 16:47:50 EDT 2017
STATUS

editing

approved

#4 by Alois P. Heinz at Thu Mar 16 16:46:41 EDT 2017
LINKS

Alois P. Heinz, <a href="/A283799/b283799.txt">Table of n, a(n) for n = 0..1000</a>

#3 by Alois P. Heinz at Thu Mar 16 16:43:57 EDT 2017
CROSSREFS
#2 by Alois P. Heinz at Thu Mar 16 16:40:05 EDT 2017
NAME

allocated for Alois P. Heinz

Number of dispersed Dyck prefixes of length 2n and height n.

DATA

1, 2, 5, 12, 36, 90, 286, 728, 2380, 6120, 20349, 52668, 177100, 460460, 1560780, 4071600, 13884156, 36312408, 124403620, 326023280, 1121099408, 2942885946, 10150595910, 26681566392, 92263734836, 242799302200, 841392966470, 2216352204360, 7694644696200

OFFSET

0,2

FORMULA

Recursion: see Maple program.

a(n) = A282869(2n,n).

MAPLE

a:= proc(n) option remember; `if`(n<3, 1+n^2, ((512*(2*n-5))

*(2519*n-1279)*(n-2)*(2*n-3)*a(n-3) +(192*(2*n-3))

*(1710*n^3-443*n^2-4990*n+2483)*a(n-2) -(24*(22671*n^4

-124866*n^3+216436*n^2-129032*n+24526))*a(n-1))

/ ((3*n+2)*(27*n+9)*(855*n-1504)*n))

end:

seq(a(n), n=0..30);

CROSSREFS

Cf. A282869.

KEYWORD

allocated

nonn

AUTHOR

Alois P. Heinz, Mar 16 2017

STATUS

approved

editing

#1 by Alois P. Heinz at Thu Mar 16 16:40:05 EDT 2017
NAME

allocated for Alois P. Heinz

KEYWORD

allocated

STATUS

approved