[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283799
Number of dispersed Dyck prefixes of length 2n and height n.
3
1, 2, 5, 12, 36, 90, 286, 728, 2380, 6120, 20349, 52668, 177100, 460460, 1560780, 4071600, 13884156, 36312408, 124403620, 326023280, 1121099408, 2942885946, 10150595910, 26681566392, 92263734836, 242799302200, 841392966470, 2216352204360, 7694644696200
OFFSET
0,2
LINKS
FORMULA
Recursion: see Maple program.
a(n) = A282869(2n,n).
From Vaclav Kotesovec, Mar 26 2018: (Start)
Recurrence: 3*n*(3*n + 1)*(3*n + 2)*(3*n^3 - 11*n^2 + 10*n - 3)*a(n) = - 24*(2*n - 1)*(6*n^3 - 1)*a(n-1) + 64*(n-1)*(2*n - 3)*(2*n - 1)*(3*n^3 - 2*n^2 - 3*n - 1)*a(n-2).
a(n) ~ ((3+2*sqrt(3)) - (-1)^n*(3-2*sqrt(3))) * 2^(4*n + 1) / (sqrt(Pi*n) * 3^(3*n/2 + 2)). (End)
MAPLE
a:= proc(n) option remember; `if`(n<3, 1+n^2, ((512*(2*n-5))
*(2519*n-1279)*(n-2)*(2*n-3)*a(n-3) +(192*(2*n-3))
*(1710*n^3-443*n^2-4990*n+2483)*a(n-2) -(24*(22671*n^4
-124866*n^3+216436*n^2-129032*n+24526))*a(n-1))
/ ((3*n+2)*(27*n+9)*(855*n-1504)*n))
end:
seq(a(n), n=0..30);
MATHEMATICA
b[x_, y_, m_] := b[x, y, m] = If[x == 0, z^m, If[y > 0, b[x - 1, y - 1, m], 0] + If[y == 0, b[x - 1, y, m], 0] + b[x - 1, y + 1, Max[m, y + 1]]];
a[n_] := Coefficient[b[2n, 0, 0], z, n];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz in A282869 *)
CROSSREFS
Sequence in context: A108555 A323397 A292169 * A225798 A303204 A333411
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 16 2017
STATUS
approved