proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
G. C. Greubel, <a href="/A276965/b276965.txt">Table of n, a(n) for n = 0..245</a>
(PARI) concat([1], for(n=1, 25, print1(sum(k=0, n, binomial(n, k)^2*binomial(n-1, k-1)^2*((n-k)!)^2), ", "))) \\ G. C. Greubel, Jun 05 2017
approved
editing
proposed
approved
editing
proposed
(Perl) use ntheory ":all"; for my $n (0..20) { say "$n ", vecsum(map{my $l=stirling($n, $_, 3); vecprod($l, $l); } 0..$n) } # Dana Jacobsen, Mar 16 2017
approved
editing
proposed
approved
editing
proposed
a(n) ~ n^(2*n - 3/4) * exp(4*sqrt(n) - 2*n - 1) / (2^(3/2) * sqrt(Pi)) * (1 + 31/(96*sqrt(n)) + 937/(18432*n)). - Vaclav Kotesovec, Sep 27 2016
Recurrence: n*(16*n^3 - 96*n^2 + 185*n - 116)*a(n) = 2*(32*n^6 - 272*n^5 + 930*n^4 - 1668*n^3 + 1670*n^2 - 867*n + 164)*a(n-1) - (n-2)*(96*n^7 - 1056*n^6 + 4646*n^5 - 10500*n^4 + 12990*n^3 - 8644*n^2 + 2827*n - 364)*a(n-2) + 2*(n-3)*(n-2)^3*(32*n^6 - 336*n^5 + 1410*n^4 - 2978*n^3 + 3268*n^2 - 1731*n + 353)*a(n-3) - (n-4)^2*(n-3)^3*(n-2)^4*(16*n^3 - 48*n^2 + 41*n - 11)*a(n-4). - Vaclav Kotesovec, Sep 27 2016
proposed
editing