[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276965 revision #26

A276965
Square row sums of the triangle of Lah numbers (A105278).
1
1, 1, 5, 73, 2017, 86801, 5289301, 430814665, 45052534913, 5868875082817, 930114039075301, 175964489469769001, 39125942325820605025, 10092849114680961297553, 2987365449592984040715317, 1005030253302269078318250601
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} lah(n,k)^2.
a(n) = Sum_{k=0..n} binomial(n,k)^2*binomial(n-1,k-1)^2*((n-k)!)^2.
a(n) = hypergeometric([-n+1,-n+1,-n,-n],[1],1).
a(n) = (n!)^2 * hypergeometric([-n+1,-n+1],[1,2,2],1) for n > 0.
Recurrence: n*(16*n^3 - 96*n^2 + 185*n - 116)*a(n) = 2*(32*n^6 - 272*n^5 + 930*n^4 - 1668*n^3 + 1670*n^2 - 867*n + 164)*a(n-1) - (n-2)*(96*n^7 - 1056*n^6 + 4646*n^5 - 10500*n^4 + 12990*n^3 - 8644*n^2 + 2827*n - 364)*a(n-2) + 2*(n-3)*(n-2)^3*(32*n^6 - 336*n^5 + 1410*n^4 - 2978*n^3 + 3268*n^2 - 1731*n + 353)*a(n-3) - (n-4)^2*(n-3)^3*(n-2)^4*(16*n^3 - 48*n^2 + 41*n - 11)*a(n-4). - Vaclav Kotesovec, Sep 27 2016
a(n) ~ n^(2*n - 3/4) * exp(4*sqrt(n) - 2*n - 1) / (2^(3/2) * sqrt(Pi)) * (1 + 31/(96*sqrt(n)) + 937/(18432*n)). - Vaclav Kotesovec, Sep 27 2016
MATHEMATICA
Table[HypergeometricPFQ[{1-n, 1-n, -n, -n}, {1}, 1], {n, 0, 100}]
PROG
(Maxima) makelist(hypergeometric([-n+1, -n+1, -n, -n], [1], 1), n, 0, 12);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Sep 27 2016
STATUS
approved